

(A DIVISION OF NIA EDUCATIONAL INSTITUTIONS)

Curriculum and Syllabi

Semesters I to VI

Regulations 2023

(2023 Batch Only)

Programme: B.E. Electronics Engineering (VLSI Design and Technology)

Curriculum and Syllabi: Semester I to VI

Recommended by Board of Studies on: 16.12.2024

Approved by Academic Council on: 03.01.2025

Action	Responsibility	Signature of Authorized Signatory
Designed and Developed By	B.E. Electronics Engineering (VLSI Design and Technology)	
Compiled By	Office of Controller of Examination	
Approved By	Principal	

Dr. Mahalingam College of Engineering and Technology, Pollachi 642003. (An autonomous institution approved by AICTE and affiliated to Anna University)

Department of B.E. Electronics Engineering (VLSI Design and Technology)

Vision

To strive for excellence in Electronics and Semiconductor Engineering education, research and technological services imparting quality training to students, to make them competent and motivated engineers.

Mission:

In order to foster growth and empowerment, we commit ourselves to

- Impart high quality technical education in Electronics and Semiconductor Engineering through effective teaching- learning process and updated curriculum.
- Equip the students with professionalism and technical expertise to provide appropriate solutions to societal and industrial needs.
- Provide stimulating environment with updated facilities to pursue research through creative thinking and team work.

Dr. Mahalingam College of Engineering and Technology, Pollachi 642003. (An autonomous institution approved by AICTE and affiliated to Anna University)

Programme Educational Objectives (PEOs)

B.E. Electronics Engineering (VLSI Design and Technology) graduates will:

PEO1.Technical Expertise: Acquire a professional career and personal development in industries / higher studies / research assignments / entrepreneurs.

PEO2.Life-long learning: Sustain to develop their knowledge and skills throughout their career.

PEO3. Ethical Knowledge: Exhibit professionalism, ethical attitude, communication skills, team work and adapt to Current trends.

Programme Outcomes (POs) - Regulations 2023

On successful completion of B.E. Electronics Engineering (VLSI Design and Technology) programme, graduating students/graduates will be able to:

PO1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

PO2. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems.

PO5. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs)

On successful completion of B.E. Electronics Engineering (VLSI Design and Technology) programme, graduating students/graduates will be able to:

PSO1. Design and Implementation of VLSI Circuits: Design and implement VLSI circuits utilizing appropriate design methodologies and optimization techniques.

PSO2. IC Design: Design ICs with optimal performance, power consumption, and area utilization, considering factors such as noise, timing constraints, and signal integrity.

Dr. Mahalingam College of Engineering and Technology, Pollachi 2023 Regulation - Course Code Generation Procedure for UG Courses

	Board/Department/Programme/Course Type								
	Character Typ	e – Alph	abet						
AD	Artificial Intelligence & Data Science	ME	Mechanical						
AM	CSE (Artificial Intelligence & Machine Learning)	SC	CSE (Cyber Security)						
AU	Automobile	PH	Physics						
CE	Civil	СН	Chemistry						
CS	Computer Science	EN	English						
EA	Advanced Communication Technology	MA	Mathematics						
EC	Electronics and Communication	ES	Employability Skills						
EE	Electrical and Electronics	VA	Value Added Course						
EV	VLSI Design & Technology	SA	Studio Activities						
IT	Information Technology								

(A DIVISION OF NIA EDUCATIONAL INSTITUTIONS)

Programme: B.E. Electronics Engineering (VLSI Design and Technology)

2023 Regulations

(For 2023 Batch Only)

Curriculum for Semester I to VI

Course Category	Course Code	Course Title	Duration	Credits	Marks
VAC	23VAL101	Induction Program	3 Weeks	-	100

Semester I										
Course	Course	Course Title	Ηοι	urs/W	eek	Cradite	Marke	Common to		
Category	Code	Course Thie	L	Т	Ρ	Credits	iviai rə	Programmes		
AEC	23ENI101	Communication Skills I	2	0	2	3	100	All		
Minor	23MAI102	Matrices and Calculus	3	0	2	4	100	AU,EA,EC, EE,EV&ME		
Minor	23CHI101	Chemistry for Electrical Sciences	3	0	2	4	100	EC,EE&EV		
Major	23ECT101	Electron Devices	3	0	0	3	100	EA,EC&EV		
Multi- Disciplinary	23ADT001	C Programming	3	0	0	3	100	CE, EA, EC,& EV		
Multi- Disciplinary	23ADL001	C Programming Laboratory	0	0	3	1.5	100	CE, EA, EC,& EV		
VAC	23VAL102	Wellness for Students	0	0	2	1	100	All		
VAC	23VAT101	தமிழர் மரபு / Heritage of Tamils	1	0	0	1	100	All		
AEC	23SAL101	Studio Activities	0	0	2	-	-	All		
		Total	0	13	20.5	800	-			

Semester II

Course	Course	Course Title	Hours/ Week		Cradita	Marka	Common to	
Category	Code	Course The	L	Т	Ρ	Cieuits	iviai ko	Programmes
	23ENI201/	Communication Skills II	2	0	2			
AEC	23FLT201/	Foreign Language-Japanese	3	0	0	3	100	ΔΠ
	23FLT202	Foreign Language-German	3	0	0	5	100	
Minor	23MAI202	Complex Variables and Transforms	3	0	2	4	100	AU, EC, EE, EV & ME
Minor	23PHI201	Physics for Electrical Sciences	3	0	2	4	100	EA, EC, EE & EV
Major	23ECT001	Circuit Theory	3	0	0	3	100	EA, EC & EV
Multi- Disciplinary	23ITT202	Problem Solving and Python Programming	3	0	0	3	100	EA, EC & EV
Multi- Disciplinary	23MEL001	Engineering Drawing	1	0	3	2.5	100	AD,AM,AU, CS,EA,EC, EE,EV,IT, ME & SC
Major	23ECL001	Electric Circuits and Electron Devices Laboratory	0	0	3	1.5	100	EA, EC&EV
SEC	23ESL201	Professional Skills 1: Problem solving skills and Logical Thinking 1	0	0	2	1	100	All
VAC	23VAT201	தமிழரும் தொழில் நட்பமும்/ Tamils and Technology	1	0	0	1	100	All
Multi- Disciplinary	23CHT202	Environmental Sciences	1	0	0	-	100	All
AEC	23SAL201	Studio Activities	0	0	2	-	-	All
		Total	17	0	16	23	1000	-

Semester III

Course	Course Code	Course Title	Hou	irs/W	eek	Crodite	Marks	Common to
Category	Course Code	Course Thie	L	Т	Ρ	Credits	IVIA KS	Programmes
Minor	23MAI301	Numerical Techniques and Linear Algebra	3	0	2	4	100	-
Major	23EVT301	Digital Electronics	3	0	0	3	100	-
Major	23EVT302	Analog Electronics	3	0	0	3	100	-
Multi Disciplinary	23EVI301	Data Structures and Algorithms using Python	2	0	2	3	100	-
Major	23EVL301	Digital IC Laboratory	0	0	3	1.5	100	-
Major	23EVL302	Analog Electronics Laboratory	0	0	3	1.5	100	-
SEC	23ESL301	Professional Skills 2: Problem solving skills & Logical Thinking 2	0	0	2	1	100	All
VAC	23VAT301	Universal Human Values 2: Understanding Harmony	2	1	0	3	100	All
AEC	23SAL301	Studio Activities	0	0	2	-	-	All
	Total					20	800	-

Semester IV

Course	Course Code	Course Title	Hou	rs/W	eek	Cradite	Marke	Common to
Category	Course Coue	Course Title	L	Т	Ρ	Credits	iviai kə	Programmes
Minor	23MAI401	Probability Theory and Statistics	3	0	2	4	100	-
Major	23EVT401	Linear Integrated Circuits	3	0	0	3	100	-
Major	23EVT402	Signals and systems	3	1	0	4	100	-
Major	23EVI401	Fundamentals of VLSI	3	0	2	4	100	-
Major	23EVT403	Microprocessors and Microcontrollers	3	0	0	3	100	-
Major	23EVL401	Microprocessors and Microcontrollers Laboratory	0	0	3	1.5	100	-
Major	23EVL402	Linear Integrated Circuits Laboratory	0	0	4	2	100	-
SEC	23ESL401	Professional Skills 3 : Professional Development and Etiquette	0	0	2	1	100	All
AEC	23SAL401	Studio Activities	0	0	2	-	-	All
		Total	15	1	15	22.5	800	-

Course Category	Course Code	Course Title	Duration	Credits	Marks	Common to Programmes
SEC	23XXXXXX	Internship - 1 / Community Internship / Skill Development	2 Weeks - 4 Weeks	1	100	-

Semester V

Course	Course Code	Course Title	Hou	rs/W	/eek	Cradita	Marka	Common to
Category	Course Code	Course Title	L	Т	Ρ	Credits	Warks	Programmes
Major	23EVT501	FPGA Based System Design	3	0	0	3	100	-
Major	23EVT502	Control System	3	1	0	4	100	-
Major	23EVT503	Digital Signal Processing	3	0	0	3	100	-
Major	23EVE501	Professional Elective - I	3	0	0	3	100	-
Major	23EVE502	Professional Elective - II	3	0	0	3	100	-
Major	23EVL501	FPGA Based System Design Laboratory	0	0	3	1.5	100	-
Major	23EVL502	Digital Signal Processing Laboratory	0	0	3	1.5	100	-
SEC	23ESL501	Professional Skills 4: Communication Skills and Interview Essentials	0	0	2	1	100	All
Project	23XXXXX	Reverse Engineering Project	0	0	6	3	100	All
AEC	23SAL501	Studio Activities	0	0	2	-	-	All
		Total	15	1	16	23	900	-

Semester VI

Course	Course Code	Course Title	Hou	rs/M	/eek	Credits	Marks	Common to	
Category			L	Т	Р	Oreans	marko	Programmes	
Major	23EVT601	CMOS Analog IC Design	3	0	0	3	100	-	
Major	23EVT602	ASIC Design	3	0	0	3	100	-	
Minor	23EVT603	Low Power VLSI Design	3	0	0	3	100	-	
Major	23EVE601	Professional Elective – III	3	0	0	3	100	-	
Major	23EVE602	Professional Elective – IV	3	0	0	3	100	-	
Minor	23EVO601	Open Elective - I	3	0	0	3	100	-	
Major	23EVL601	CMOS Analog IC Design Laboratory	0	0	3	1.5	100	-	
Major	23EVL602	ASIC Design Laboratory	0	0	3	1.5	100		
SEC	23ESL601	Professional Skills 5: Campus to Corporate	0	0	2	1	100	All	
AEC	23SAL601	Studio Activities	0	0	2	-	-	All	
		Total	18	0	10	22	900	-	

Course Category	Course Code	Course Title	Duration	Credits	Marks	Common to Programmes
SEC	23XXXXXX	Internship - 2 / Research Internship / Skill Development	2 Weeks – 4 Weeks	1	100	-

Tentative Curriculum for Semester VII and VIII Semester VII

Course	Course Code	Course Title	Hours/Week			Credits	Marks	Common to
Category	Course Coue		L	Т	Ρ	Cieuits	iviai k5	Programmes
Major	23XXXXXX	VLSI Technology	3	0	0	3	100	-
Major	23XXXXXX	Mixed Signal IC Design	3	0	0	3	100	-
Major	23XXXXXX	Professional Elective – V	3	0	0	3	100	-
Major	23XXXXXX	Professional Elective – VI	3	0	0	3	100	-
Minor	23XXXXXX	Open Elective – II	3	0	0	3	100	-
Major	23XXXXXX	PCB design Laboratory	0	0	4	2	100	
Major	23XXXXXX	Mixed Signal IC Design Laboratory	0	0	4	2	100	-
Project	23XXXXXX	Project Phase – I	0	0	8	4	100	-
		Total	15	0	16	23	800	-

Semester VIII

Course	Course Code	Course Title	Ηοι	urs/W	eek	Crodite	Marke	Common to
Category	Course Coue		L	Т	Ρ	Cieuns	IVIAI NO	Programmes
Project	23XXXXXX	Project Phase - II	0	0	12	6	200	-
SEC	23XXXXXX	Internship - 3 / Skill Development	8 Weeks			4	100	-
		Total	6	0	16	10	300	-

Total Credits: 166

Vertical wise Electives

Vertical I - Analog VLSI Design											
Course	Course Code		Но	urs/W	eek	Cradite	Marke	Common to			
Category	Course Coue	Course Title	L	. T P		Cledits	iviai k5	Programmes			
Major	23EVE001	Active Filters Design	3	0	0	3	100	-			
Major	23EVE002	Design of CMOS Phase Lock Loop	3	0	0	3	100	-			
Major	23EVE003	High Speed Interconnects for VLSI design	3	0	0	3	100	-			
Major	23EVE004	Art of Analog Layout design	3	0	0	3	100	-			

Vertical II - Digital VLSI Design											
Course	Course Code	Course Title	Но	urs/W	eek	Crodite	Marke	Common to Programmes			
Category	Course Coue	Course Title	L	Т	Р	Credits	IVIAI KS				
Major	23EVE005	Digital IC Design	3	0	0	3	100	-			
Major	23EVE006	VLSI Digital Signal Processing	3	0	0	3	100	-			
Major	23EVE007	Scripting Language for Electronic Design Automation	3	0	0	3	100	-			
Major	23EVE008	Memory Devices and Circuits	3	0	0	3	100	-			
Major	23EVE009	Verification Methodologies	3	0	0	3	100	-			

Vertical III - VLSI Applications											
Course	Course Code	Course Title	Но	urs/W	eek	Cradite	Marke	Common to			
Category			L	Т	Р	orcaits	Marko	Programmes			
Major	23EVE010	VLSI Architectures for Image and Video Processing	3	0	0	3	100	-			
Major	23EVE011	VLSI design of Neural Networks	3	0	0	3	100	-			
Major	23EVE012	VLSI for wireless Communications	3	0	0	3	100	-			
Major	23EVE013	Integrated Circuits for Optical Communication	3	0	0	3	100	-			

	Vertical IV - Fabrication and Advanced design Techniques											
Course	Course Code	Oourse Title	Но	urs/W	eek	Cradita	Marke	Common to				
Category	Course Coue	Course The	L	Т	Р	Credits	IVIAI NS	Programmes				
Major	23EVE014	Microchip fabrication	3	0	0	3	100	-				
Major	23EVE015	Power management and clock distribution	3	0	0	3	100	-				
Major	23EVE016	Reliability in VLSI circuits	3	0	0	3	100	-				
Major	23EVE017	Synthesis and optimization of VLSI circuits	3	0	0	3	100	-				
Major	23EVE018	IP core design and protection	3	0	0	3	100	-				
Major	23EVE019	Electronics Packaging	3	0	0	3	100	-				
Major	23EVE020	Thin Film Characterization	3	0	0	3	100	-				

SEMESTER I

Course Code:23VAL101	Course Title: Induction Program (Common to all B.E / B.Tech Programmes)						
Course Category: VAC	Course Level: Introductory						
Duration: 3 weeks	Mandatory Non-Credit Course Max Marks:100						

Pre-requisites

≻ NIL

Course Objectives

The course is intended to:

- 1. Explain various sources available to meet the needs of self, such as personal items and learning resources
- 2. Explain various career opportunities, opportunity for growth of self and avenues available in the campus
- 3. Explain the opportunity available for professional development
- 4. Build universal human values and bonding amongst all the inmates of the campus and the society.

List of Activities:

- History of Institution and Management: Overview on NIA Educational Institutions –Growth of MCET – Examination Process –OBE Practices –Code of Conduct – Centre of Excellence.
- 2. Lectures, interaction sessions and Motivational Talks by Eminent people, Alumni, Employer and Industry Experts
- 3. Familiarisation of Department / Branch: HoD's & Senior Interaction- Department Association
- 4. Universal Human Value Modules : Aspirations and concerns, Self Management, Relations Social and Natural Environment.
- 5. Orientation on Professional Skills Courses
- 6. Proficiency Modules : Mathematics, English, Physics and Chemistry
- 7. Introduction to various Chapters, Cells, Clubs and its events
- 8. Creative Arts : Painting, Music and Dance
- 9. Physical Activity :Games, Sports and Yoga
- 10. Group Visits: Visit to local area and Campus Tour

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1 : Explain various sources available to meet the needs of self, such as personal items and learning resources through visit to local areas and campus	Understand
CO2: Explain various career opportunities and avenues available in the campus through orientation sessions	Understand
CO3: Explain the opportunity available for professional development through professional skills, curricular, co-curricular and extracurricular activities	Understand
CO4: Build universal human values and bonding amongst all the inmates of the campus and society for having a better life	Apply

Course Articulation Matrix

СО	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	P01	P01	P01	PSO	PSO
CO1	1	-	-	-	-	-	-	2	1	2	-	-	-	-
CO2	1	-	-	-	-	-	-	2	1	2	-	-	-	-
CO3	1	-	-	-	-	-	-	2	1	2	-	-	-	-
CO4	2	-	-	-	-	-	-	2	1	2	-	-	-	-

High : 3, Medium :2, Low: 1

Text Book(s):

T1. Reading material, Workbook prepared by PS team of the college

Reference Book(s):

- R1. Sean Covey, "Seven habits of highly effective teenagers", Simon & Schuster Uk, 2004.
- R2. Vethathiri Maharishi Institute For Spiritual and Intuitional Education, aliyar, "value educat harmonious life (Manavalakalai Yoga)", Vethathri Publications, Erode, 2010.
- R3. Dr.R.Nagarathna, Dr.H.R. Nagendra, "Integrated approach of yoga therapy for positive Swami Vivekananada Yoga Prakashana Bangalore,2008 Ed.

Web References:

- 1. https://youtube.com/playlist?list=PLYwzG2fd7hzc4HerTNkc3pS_lvcCfKznV
- 2. https://www.youtube.com/watch?v=P4vjfEVk&list=PLWDeKF97v9SO0frdgmpaghDMjkom1
- 3. https://fdp-si.aicte-india.org/download/AboutSIP/About%20SIP.pdf

Course Code: 23ENI101	Course Title: Communication Skills I (Common to all B.E/B.Tech Programmes)						
Course Category: AEC		Course Level: Introductory					
L:T:P(Hours/Week) 2:0:2	Credits: 3	Total Contact Hours:60	Max Marks:100				

Course Objectives

The course is intended to impart formal and informal language effectively and accurately in various real-life contexts on par with B1 level of CEFR Scale.

Module I

20 Hours

Grammar: Synonyms & Antonyms -Tense forms - Modals - Passives – Reported Speech – Comparatives and Descriptive adjectives.

Listening: Listening for gist and specific information - Listening to past events, experiences and job preferences - Listening to descriptions of monuments - Listening for excuses - Listening to description: transportation systems and public places.

Speaking: Introducing oneself - Exchanging personal information – Effective Conversations: Role Play Situations (Describing personality traits - Describing landmarks, monuments and festivals - Making polite requests and excuses - Discussing facts - Asking for and giving information – Expressing wishes - Talking about lifestyle changes - Talking about transportation and its problems - Describing positive and negative features of things and places - Making comparisons)

Reading: Skimming and Scanning - Reading Comprehension - Reading and comprehending online posts and emails – Case Studies

Writing: Letter writing (Permission letters - Online cover letter for job applications) - Instructions - Recommendations - Write a blog (General) - Report Writing (Industrial Visit Report and Event Reports) - formal and informal emails.

Module II

20 Hours

Grammar: Sequence adverbs - Phrasal verbs - Relative clauses – Imperatives - Infinitives - Conditionals.

Listening: Listening to review of food items - Listening to results of surveys- Listening to motivational talks & podcasts

Speaking: Expressing likes and dislikes - Describing a favorite snack - Giving advices and suggestions - Speculating about past and future Events – Group Discussion

Reading: Reading different expository texts - Reading to factual texts - Print and online media-Reading Comprehension

Writing: Process Descriptions – Email Writing (Requesting for information) - Reviewing Movie – Social media feeds/posts (Any Social Media)

List of Experiments:

- 1. Mini Presentation and Picture Prompt Discussion
- 2. Debate Tournament
- 3. Listening, Mind Mapping & Summarization
- 4. Listening to Stories and Providing the Innovative Climax
- 5. Reading Comprehension
- 6. Writing Interpretation of Visuals

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1 : Utilize the basic English grammar and vocabulary to acquire professional communication skills.	Apply
CO 2 : Develop listening and speaking skills through classroom activities based on listening comprehension, recapitulation, interpretation and debate on the same	Apply
CO 3 : Read and write social media posts and comments	Apply
CO 4 : Perform as a member of a team and engage in individual presentation	Apply

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4	-	-	-	-	-	-	-	-	2	3	-	-	-	-

High-3; Medium-2;Low-1

Textbooks:

- T1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange Student's book 2", 5thEdition, Cambridge University Press, South Asia Edition, 2022.
- T2. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange Student's Book 1", 5thEdition, Cambridge University Press, South Asia Edition, 2022.

Reference Book(s):

- R1. David Bohlke, Jack C. Richards, "Four Corners", 2nd Edition, Cambridge University Press,2018.
- R2. Adrian Doff, Craig Thaine, Herbert Puchta, Jeff Stranks, Peter Lewis-Jones, Graham Burton, Empower B1 Student's Book, Cambridge University Press, 2020.
- R3. Raymond Murphy, "Intermediate English Grammar" 30th Edition, Cambridge University Press,2022.

Web References:

- 1. https://speakandimprove.com/
- 2. https://writeandimprove.com/
- 3. https://www.cambridgeenglish.org/exams-and-tests/linguaskill/

Course Code: 23MAI102	Course T (Commo	itle: Matrices and Calculus n to AU, EA, EC, EE, EV & ME)					
Course Category: Minor		Course Level: Introductory					
L:T:P(Hours/Week)3:0 :2	Credits: 4	Total Contact Hours:75	Max Marks:100				

Course Objectives:

The course is intended to impart knowledge on the use of matrix algebra techniques for practical applications, familiarize with differential calculus and acquire knowledge of mathematical tools to evaluate multiple integrals.

Module I

Matrices

Definitions and examples of symmetric, skew symmetric and orthogonal matrices - Eigenvalues and Eigenvectors – Properties of Eigenvalues and Eigenvectors-Diagonalization of matrices through orthogonal transformation - Cayley-Hamilton Theorem (without proof) – verification problems and properties - Transformation of quadratic forms to canonical forms through orthogonal transformation.

Differential and Integral Calculus

Curvature – Radius of curvature –Centre of curvature- Circle of curvature - Evolutes and Involutes - Evaluation of definite and improper integrals - Beta and Gamma functions – Properties and applications.

Multivariable Differentiation I

Limit – continuity - Mean value theorems and partial derivatives - Taylor's series and Maclaurin's series – Jacobian of functions of several variables.

Module II

Multivariable Differentiation II

Maxima, Minima and saddle points of functions of several variables - Method of Lagrange's multipliers.

Multiple Integral

Multiple Integration: Double integrals - Change of order of integration in double integrals - Change of variables (Cartesian to polar, Cartesian to spherical and Cartesian to cylindrical) - Triple integrals - Applications: Finding areas and volumes.

Ordinary Differential Equations Of Second and Higher Orders

Second and higher order linear differential equations with constant coefficients – Second order linear differential equations with variable coefficients (Cauchy - Euler equation, Legendre's equation) – Method of variation of parameters – Solution of first order simultaneous linear ordinary differential equations

22 Hours

23 Hours

List of Experiments:

- 1. Introduction to MATLAB.
- 2. Rank of matrix and solution of system of linear algebraic equations.
- 3. Finding Eigen values and Eigen vectors of a matrix.
- 4. Solving ordinary differential equation.
- 5. Gram Schmidt Procedure.
- 6. Finding Maxima, Minima of a function.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Determine the canonical form of a quadratic form using orthogonal transformation.	Apply
CO2: Identify the evolute of a curve and solve the improper integrals using beta gamma functions.	Apply
CO3: Examine the extreme value of multivariate functions.	Apply
CO4: Evaluate the area and volume using multiple integrals and solve the higher order differential equations.	Apply
CO5: Demonstrate the understanding of calculus concepts through modern tools.	Apply

Course Articulation Matrix

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-	-	-

High-3; Medium-2;Low-1

Text Book(s):

T1. Erwinkreyzig, Advanced Engineering Mathematics, 9th edition, John Wiley& Sons, 2006.

T2. Veerarajan T., Engineering Mathematics for first year, 3rd edition, Tata McGraw-Hill,

Reference Book(s):

R1. G.B.Thomas and R.L Finney, Calculus and Analytic Geometry, 9th edition, Pearson,

Reprint, 2002.

- R2. B.S.Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- R3. P. Sivaramakrishna Das , C. Vijayakumari , Engineering Mathematics, Pearson India, 2017.

Web References:

- 1. https://nptel.ac.in/courses/111107112
- 2. https://nptel.ac.in/courses/111104031

Course Code: 23CHI101	Course Title: Chemistry for Electrical Sciences (Common to EC, EE & EV)						
Type of Course: Minor	Course Level: Introductory						
L:T:P (Hours/Week) 3: 0:2	Credits:4	Total Contact Hours:75	Max Marks:100				

Course Objectives

The course is intended to impart the knowledge of chemistry involved in Electrochemistry, Corrosion and its control, Spectroscopic technique, Fuels and Nanomaterials.

Module: I

23 Hours

Electrochemistry and Batteries:

Electrochemistry - Basic terminologies - Potentiometric titration – Nernst equation – Batteries – Types and Characteristics, Construction, working and applications - Lead –Acid battery, Lithiumion battery – Fuel cells - Construction, working and applications – Hydrogen Oxygen fuel cell.

Corrosion and its Control:

Corrosion – Dry and Wet corrosion – Mechanism of electrochemical corrosion – Galvanic corrosion and Concentration cell corrosion, Factors influencing corrosion. Corrosion Control methods – Cathodic protection methods, Metallic coating – Galvanizing, Tinning – Chrome plating and Electroless plating of Nickel

Spectroscopic Techniques:

Spectroscopy- Electromagnetic spectrum, Absorption and Emission spectroscopy – Relationship between absorbance and concentration – Derivation of Beer-Lambert's law (problems).

Module: II

22 Hours

Spectroscopic Techniques:

UV - Visible Spectroscopy, Atomic Absorption Spectroscopy, Flame photometry - Principle, Instrumentation, and applications.

Biofuels and Lubricants:

Biomass - Biogas - Constituents, manufacture and uses. General outline of fermentationprocess - manufacture of ethyl alcohol by fermentation process. Combustion - Calorific values -Gross and Net calorific value - Problems based on calorific value. Lubricants - Classification of lubricants -Properties of liquid lubricants and their significance - Greases - Common grease types and properties. Components of grease – Base oil, additives and thickener.

Synthesis and Applications of Nano Materials:

Introduction - Difference between bulk and Nano materials - size dependent properties. Nano scale materials - Particles, clusters, rods, and tubes. Synthesis of Nanomaterials: Sol-Gel process, Electro deposition, Hydrothermal methods. Applications of Nano materials in Electronics, Energy science and Medicines. Risk and future perspectives of nano materials.

LIST OF EXPERIMENTS: (Any 6 experiments)

- 1. Estimation of Fe^{2+} by potentiometric titration.
- 2. Determination of corrosion rate by weight loss method.
- 3. Estimation of iron in water by spectrophotometry
- 4. Determination of Cloud and Pour Point.
- 5. Green Synthesis of Silver Nanoparticles by Neem leaf.
- 6. Conductometric titration of strong acid against strong base.
- 7.Determination of strength of acid by pH metry.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1: Understand and explain the chemistry involved in Electrochemistry,	l la derete a d
Corrosion, Spectroscopic techniques, Fuels and Nanomaterials.	Understand
CO2: Apply the acquired knowledge of chemistry to solve the Engineering	Apply
problems.	Арріу
CO3: Analyze the Engineering problems through the concept of Electro	Apply
chemistry, Spectroscopic techniques, Fuels, and Nanomaterials.	Арріу
CO4: Apply the knowledge of chemistry to investigate Engineering materials	
by volumetric and instrumental methods and analyze, interpret the data	Evaluate
to assess and address the issues of Environmental Pollution	

Course Articulation Matrix

со	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-	-	-

Text book(s):

- T1. Jain and Jain, Engineering Chemistry, 17th Edition, Dhanpat Rai Publishing Company, New Delhi, 2018.
- **T2**. Wiley Engineering Chemistry, 2nd Edition, Wiley India Pvt Ltd, New Delhi, 2011.

Reference Book(s):

- R1. Dara S. S and Umare S. S., A textbook of Engineering Chemistry, 12th Edition,
 S. Chand & Co Ltd, New Delhi , 2014.
- **R2**. V. R. Gowariker, N. V. Viswanathan and Jayadev Sreedhar, Polymer Science,4th Edition New Age International(P) Ltd, Chennai ,2021.

R3. Jeffery G. H., Bassett. J., Mendham J and Denny R. C., Vogel's Textbook of Quantitative Chemical Analysis, 5th Edition Oxford, ELBS, London, 2012.

Web References:

- 1. http://nptel.ac.in/courses/122101001/downloads/lec.23.pdf
- 2. https://nptel.ac.in/courses/104106075/Week1/MODULE%201.pdf
- 3. https://nptel.ac.in/courses/103102015/

Course Code: 23ECT101	Cour	Course Title: Electron Devices (Common to EA ,EC & EV)				
Course Category: Major		Course Level: Introductory				
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total Contact Hours:45	Max Marks:100			

Course Objective:

The course is intended to impart knowledge of basic electronic devices such as diodes, Bipolar junction Transistors and Field effect transistors.

Module I

23 Hours

Semiconductor Diode: PN junction - forward and reverse bias conditions. V-I Characteristics and its Temperature dependence – Diode specifications - Diode Resistance – Diode junction Capacitance – Transition and Diffusion capacitances - Rectifiers - Clipper - Clamper

Special Diodes: Zener diode - Characteristics of Zener diode - Avalanche and Zener breakdown - Application of Zener diode :Voltage regulator - Varactor diode, Tunnel diode, Light emitting diodes – Photo diodes

Bipolar Junction Transistors: Bipolar Junction Transistor and its types: NPN and PNP Transistor - Transistor operation - Configurations of BJT : Input and output characteristics of CE, CB and CC configurations - Transistor as a Switch and Amplifier.

Module II

22 Hours

Field Effect Transistors: JFET and its types, construction and operation of n- channel and pchannel JFETs – characteristics curves – FET applications – Comparison of BJT and JFET **MOSFETS and Power Devices:** MOSFETs: Depletion MOSFETs and Enhancement MOSFETs – construction and operation - Drain and Transfer characteristics - Differences between JFETs and MOSFETs – Precaution in handling MOSFETs - MOSFET as a switch.

Construction, operation and characteristics of SCR, DIAC, TRIAC, Power transistor and IGBT

Cognitive Level	
Understand	
Analyze	
Apply	

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	2	2	-	1	1	-

High-3; Medium-2; Low-1

Text Book:

T1. Millman J., Halkias C. C. "Electronic Devices and Circuits ", Tata McGraw Hill, New Delhi, 2011.

Reference Book(s):

- R1. Salivahanan.S, Suresh kumar.N and Vallavaraj.A, "Electronic Devices and Circuits", Second Edition, TMH, New Delhi, 2008.
- R2. Robert Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theory", Pearson Prentice Hall, Tenth Edition, 2008.
- R3. Streetman Ben G. and Banerjee Sanjay, "Solid State Electronic devices", PHI, Sixth Edition, 2006
- R4. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, Fifth Edition, 2008

Web References:

- 1. http://nptel.ac.in/video.php?subjectId=117103063
- 2. http://nptel.ac.in/video.php?subjectId=117106091
- 3. www.youtube.com/watch?v=Wf19II0ts84

Course Code: 23ADT001	Cours (Com	Course Title: C Programming (Common to CE, EA, EC, EE & EV)				
Course Category: Multi-dis	ciplinary	Course Level: Introductory				
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total Contact Hours:45	Max Marks:100			

Course Objectives:

The course helps to understand the structured and procedural programming skills. The major objective is to provide students with understanding of code organization and functional hierarchical decomposition using complex data types.

Module I

22 Hours

Basics Of Computer Organization: Generation and Classification of Computers – Basic Organization of a Computer – Software development life cycle – Problem Solving Techniques, Algorithm, Pseudo code and Flow Chart.

Introduction To C Programming: Introduction – Structure of a C program – Keywords – Identifiers – Constants – Variables – Data Types – Operators and Expressions – Formatted & Unformatted I/O functions – Decision statements – Loop control statements.

Arrays: Characteristics – Declaration-One-dimensional array, Two-dimensional arrays

Module II

Functions: Declaration & Definition of function – Built in function – User defined function -Types of functions – Call by value & reference.

Strings and Pointers: Formatting strings – String handling functions. Pointers: Features and Types of pointers – Arithmetic operations with pointers–Pointers and Arrays- Array of Pointers-Pointers and Strings

Structures and Union: Structures: Features – Operations on Structures – Array of structures – Pointers to Structures -Unions-Union of Structures.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1: Correlate the fundamental concepts of computer organization such as architectures of the processors and project management for real time application	Apply
CO2: Infer the fundamental concepts of programming, such as variables, data types and control structures for real time problems	Analyze
CO3: Apply programs solving skills and knowledge of C programmingconstructs to solve the given one dimensional and two dimensional datasets	Apply
CO4: Build a modules to solve the given application using functions	Apply
CO5: Develop a program by accessing the address of the variable using pointers and manipulation of characters using string handling functions	Apply
CO6: Test the performance of the students by group assignments and projects on real time problems	Evaluate

23 Hours

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	2	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	-	1	-	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	1	-	-	-	-	-	-	-	-	-	-
CO6	-	1	-	3	2	-	-	-	2	-	-	2	-	-

High-3; Medium-2; Low-1

Text Book(s):

- T1. Ashok N.Kamthane, Amit.N.Kamthane, "Programming in C", 3rd Edition,Pearson Education, 2015.
- T2. Deitel H M and Deitel P J, "C How to Program", Prentice Hall, 2013.

Reference Book(s):

- R1. Ajay Mittal, "Programming in C-A Practical Approach", 3rd Edition, Pearson Education, 2010.
- R2. Yashavant P.Kanetkar," Let Us C", 16th Edition, BPB Publications, 2018.
- R3. Herbert Schildt, "C The Complete Reference", Tata McGraw Hill, 2010.
- R4. S Gottfried Byron, "Programming With C", Tata McGraw Hill, 2011.

Web References:

- 1. NPTEL course content on Introduction To Programming In https://onlinecourses.nptel.ac.in/noc22_cs40
- 2. Complete guide on Learn C programming: http://www.cprogramming.com/
- 3. Complete reference manual on C programming: http://www.c4learn.com/

Course Code:23ADL001			Course Title: C Programming Laboratory (Common to CE,EA,EC,EE & EV)					
Course Category: M	ulti-discipli	ina	ry	Course Le	evel: Introductory			
L:T:P(Hours/Week) 0:0:3	Credits:1.	5	Total Contact Ho	ours:45	Max Marks:100			

Course Objectives

The course introduces students to the practical knowledge of programming using C programming language as an implementation tool. It aims at providing students with understanding of programming essentials used within the framework of imperative and structural programming paradigms.

List of Experiments:

- 1. Implement basic C programs using data types
- 2. Implement programs using Operators and Expressions
- **3.** Develop Programs using Branching statements
- 4. Implement Programs using Control Structures
- 5. Develop programs using Arrays
- 6. Implement programs using Functions
- 7. Implement programs using String Operations
- 8. Develop programs using Pointers
- 9. Implement programs using Structures
- 10. Develop programs using Union

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1:Write programs using appropriate programming constructs.	Apply
CO2: Apply programs solving skills and knowledge of C programming constructs to solve the given one dimensional and two dimensional dataset	Apply
CO3: Develop a program by accessing the address of the variable using pointers and manipulation of characters using string handling functions	Analyze
CO4: Evaluate modular programming techniques to break down complex programs into smaller and manageable modules	Evaluate

Course Articulation Matrix

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	-	-	-	3	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	3	-	-	-	-	-	-	-	-	-
CO3	-	2	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	3	-	-	-	-	-	-	1	-	-

High-3; Medium-2; Low-1

Text Book(s):

- T1. Ashok N.Kamthane, Amit.N.Kamthane, "Programming in C", 3rd Edition, Pearson education, 2015.
- T2. Deitel H M and Deitel P J, "C How to Program", Prentice Hall, 2013.

Reference Book(s):

- R1. Ajay Mittal, "Programming in C-A Practical Approach", 3rd Edition, Pearson Education, 2010.
- R2. Yashavant P.Kanetkar, "Let Us C", 16th Edition, BPB Publications, 2018.
- R3. Herbert Schildt, "C The Complete Reference", Tata McGraw Hill, 2010.

Web References:

- 1. C programming resources: https://electronicsforu.com/resources/15-free-c-programmingebooks
- 2. C programming tutorials: https://www.fromdev.com/2013/10/c-programming-tutorials.html
- 3. C Manual: https://books.goalkicker.com/CBook

Course Code: 23VAL102	Cour (Con	urse Title: Wellness for Students ommon to all B.E/B.Tech Programmes)						
Course Category: VAC		Course Level: Introductory						
L:T:P(Hours/Week) 0:0:2	Credits:1	Total Contact Hours:30	Max Marks:100					

Course Objectives:

The course is intended to impart knowledge on setting SMART goals for academic, career and life, applying time management techniques, articulating the importance of wellness for success in life and understanding the dimensions of wellbeing and relevant practices.

Module I

15 Hours

GOAL SETTING Understanding Vision and mission statements - Writing personal mission statements – 'Focus' as a way of life of most successful people. Clarifying personal values, interests and orientations – Awareness of opportunities ahead – Personal SWOT analysis - Principles driving goal setting: Principle of response and stimuli, Circle of influence and circle of concern, What you see depends on the role you assume. Potential obstacles to setting and reaching your goals - Five steps to goals setting: SMART goals, Inclusive goals, Positive stretch, Pain vs gain, Gun-point commitment.

TIME MANAGEMENT - TOOLS AND TECHNIQUES Importance of planning and working to time. Pareto 80-20 principle of prioritization – Time quadrants as a way to prioritize weekly tasks – The glass jar principle - Handling time wasters – Assertiveness, the art of saying 'NO' – Managing procrastination.

CONCEPT OF WELLNESS – impact of absence of wellness - Wellness as important component to achieve success. Wellbeing as per WHO - Dimensions of Wellbeing: Physical, Mental, Social, Spiritual – indicators and assessment methods

Module II

15 Hours

Simplified Physical Exercises. Fitness as a subset of Wellness – health related physical fitness - skill related physical fitness. Joint movements, Warm up exercises, simple asanas, WCSC simplified exercises.

PRACTICES FOR MENTAL WELLNESS

Meditation: Mind and its functions - mind wave frequency – Simple basic meditation – WCSC meditation and introspection tables. Greatness of friendship and social welfare – individual, family and world peace – blessings and benefits.

Food & sleep for wellness: balanced diet - good food habits for better health (anatomic therapy) – hazards of junk food - food and the gunas.

PUTTING INTO PRACTICE

Practicals: Using the weekly journal – Executing and achieving short term goals – Periodic reviews.

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:		
CO 1: Set well-articulated goals for academics, career, and personal aspirations	Apply	
CO 2: Apply time management techniques to complete planned tasks on time	Apply	
CO 3: Explain the concept of wellness and its importance to be successful in career and life	Apply	
CO 4:Explain the dimensions of wellness and practices that can promote wellness	Apply	
CO 5: Demonstrate the practices that can promote wellness	Valuing	

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	1	1	-	1
CO2	-	-	-	-	-	-	-	-	1	-	1	1
CO3	-	-	-	-	-	-	-	-	1	-	-	1
CO4	-	-	-	-	-	-	-	-	1	-	-	1
CO5	-	-	-	-	-	1	1	-	1	-	-	1

High-3; Medium-2;Low-1

Text Book(s):

T1. Reading material, workbook and journal prepared by PS team of the college

Reference Book(s):

- R1. Stephen R Covey, "First things first", Simon & Schuster UK, Aug 1997
- R2. Sean Covey, "Seven habits of highly effective teenagers", Simon & Schuster UK, 2004.
- R3. Vethathiri Maharishi Institute for Spiritual and Intuitional Education, Aliyar, "Value education for harmonious life (Manavalakalai Yoga)", Vethathiri Publications, Erode, I Ed. (2010).
- R4. Dr. R. Nagarathna, Dr. H.R. Nagendra, "Integrated approach of yoga therapy for positive health", Swami Vivekananda Yoga Prakashana, Bangalore, 2008 Ed.
- R5. Tony Buzan, Harper Collins, "The Power of Physical Intelligence English"

Course Code: 23VAT101	Course Ti (Common	itle: HERITAGE OF TAMILS 1 to all B.E/B.Tech Programmes)				
Course Category: VAC		Course Level: Introductory				
L:T:P (Hours/Week) 1: 0 :0	Credit: 1	Total Contact Hours: 15	Max Marks:100			

Pre-requisites

> NIL

Course Objectives

மாணவாகள் இப்பாடத்தை கற்றலின் மூலம்

- CO.1 மொழி மற்றும் இலக்கியம், பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை சிற்பக் கலை, நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள், திணைக் கோட்பாடுகள் மூலம் தமிழர் மரபை அறிந்து கொள்ள இயலும்.
- CO.2இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பை அறிந்து கொள்ள இயலும்.

தமிழர் மரபு

அலகு 1 – மொழி மற்றும் இலக்கியம்

இந்திய மொழிக் குடும்பங்கள் – தீராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் – சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் – பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

அலகு 2 – மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள் – பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு 3 – நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்

தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

З

з

З

அலகு 4 – தமிழா்களின் திணைக் கோட்பாடுகள்

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழா்கள் போற்றிய அறக் கோட்பாடு – சங்க காலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறைமுகங்களும் – சங்க காலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல் கடந்த நாடுகளில் சோழா்களின் வெற்றி.

அலகு 5 – இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு 3

இந்திய விடுதலைப் போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறபகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுய மரியாதை இயக்கம் – இந்திய மருத்துவத்தில் சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெ முத்துப் படிகள்– தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

TOTAL : 15 PERIODS

Course	Outcomes	
மாணவர்	கள் இப்பாடத்தை கற்றபின்	Cognitive Level
CO.1	மொழி மற்றும் இலக்கியம், பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை , நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள் , திணைக் கோட்பாடுகள் மூலம் தமிழர் மரபை அறிந்து கொள்வார்கள்.	அறிதல் (Understand)
CO.2	இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பை அறிந்து கொள்வார்கள்.	அறிதல் (Understand)

Course Articulation Matrix

СО	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-

High-3; Medium-2; Low-1

TEXT - CUM REFERENCE BOOKS

- 1 தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை வெளியீடு. தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவா் இல. சுந்தரம் (விகடன் பிரசுரம்)
- 3. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL
 (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:

Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

Course Code: 23VAT101	Course Ti (Common	itle: HERITAGE OF TAMILS 1 to all B.E/B.Tech Programmes)					
Course Category: VAC		Course Level: Introductory					
L:T:P (Hours/Week) 1: 0 :0	Credit: 1	Total Contact Hours: 15	Max Marks:100				

Pre-requisites

> NIL

Course Objectives

The course is intended to:

- 1. Understand the Heritage of Tamils in terms of Language and Literature, Rock Art Paintings to Modern Art Sculpture, Folk and Martial Arts, Thinai Concept.
- 2. Understand the Contribution of Tamils to Indian National Movement and Indian Culture.

HERITAGE OF TAMILS

3

UNIT I LANGUAGE AND LITERATURE

Language Families in India - Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE 3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL : 15 PERIODS

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	Cognitive Level
CO.1 Understand the Heritage of Tamils in terms of Languag and Literature, Rock Art Paintings to Modern Art – Sculpture, Folk and Martial Arts, Thinai Concept.	e Understand
CO.2 Understand the Contribution of Tamils to Indian Nationa Movement and Indian Culture.	al Understand

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-

High-3; Medium-2; Low-1

3

TEXT - CUM REFERENCE BOOKS

- 1 தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை வெளியீடு. தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவா் இல. சுந்தரம் (விகடன் பிரசுரம்)
- 3. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL

 (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:

Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

SEMESTER II
Course Code: 23ENI201	Course (Comm	e Title: Communication Skills II non to all B.E/B.Tech Programmes)					
Course Category: AEC		Course Level: Introductory					
L:T:P(Hours/Week) 2:0:2	Credits: 3	Total ContactHours:60	Max Marks:100				

The course is intended to impart effective and accurate language in business correspondence on par with B2 level of CEFR Scale.

20 Hours

Module I

Grammar: Linking Words - Collocations –Sentence Completion - Articles –Adverbs– Indefinite Pronoun

Listening: Listening to short conversations - Listening for gist and summarizing - Listening for detail - Responding to straightforward questions.

Speaking: Making statements of facts - Agreeing and disagreeing to opinions - Respond to queries - Group Discussion.

Reading: Read and select (phrasal verbs & relative clause)- Cloze Test - Gapped sentences - Multiple- choice gap-fill

Writing: Paragraph Writing: Descriptive, narrative, persuasive and argumentative - Emails: Giving information - Making enquiries - Responding to enquiries - Power Point Presentation

Module II

20 Hours

Grammar: Expressions of cause and result – Concord - Error Spotting (Parts of Speech & Indian English) - Prepositions

Listening: Listening for identifying main points - Responding to a range of questions about different topics - Listening to identify relevant information

Speaking: Empathetic Enunciation – Situation handling – Visual Interpretation - - Short presentations

Reading: Intensive Reading: Comprehending business articles, reports and proposals and company websites-- Open gap-fill - Extended reading

Writing: – Report Writing - Memo – Complaint letter - Business Letters (Seeking permission & Providing Information)

List of Experiments:

20 Hours

- 1. Listening to Monologue and Extended Listening Activity I
- 2. Listening to Monologue and Extended Listening Activity II
- 3. Expressing Opinions and Situational based speaking
- 4. Mini Presentation and Visual Interpretation
- 5. Reading Comprehension
- 6. Writing letter, email and report

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Identify the common errors in written and spoken correspondence.	Apply
CO2:Develop listening, reading and speaking skills through task based activities in listening, reading comprehension, recapitulation, interpretation and discussion.	Apply
CO3:Read business correspondences like memo, Email, letter, proposals and write reports and website entries and product launches.	Apply
CO4:Perform as an individual and member of a team and engage effectively in group discussion and individual presentation.	Apply

Course Articulation Matrix

СО	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4	-	-	-	-	-	-	-	-	2	3	-	-	-	-

High-3; Medium-2;Low-1

Textbooks:

- T1. Guy Brook- Hart, "Business Benchmark Upper Intermediate", 2nd Edition, SouthAsian, Cambridge University Press, 2020.
- T2. Norman Whitby, "Business Benchmark pre-intermediate to Intermediate", 2nd Edition, South Asian, Cambridge University Press, 2014.

Reference Book(s):

R1. Hewings Martin - Advanced Grammar in use Upper-intermediate Proficiency, CUP,3rd Edition,2013.

R2. Clark David – Essential BULATS (Business Language Testing Service), CUP, 2006. R3.

Adrian Doff, Craig Thaine, Herbert Puchta, Jeff Stranks, Peter Lewis-Jones, Rachel Godfrey, Gareth Davies, Empower B1+ – Student's Book, Cambridge University Press, 2015.

- 1. https://speakandimprove.com/
- 2. https://writeandimprove.com/
- 3. https://www.cambridgeenglish.org/exams-and-tests/linguaskill/

Course Code:23FLT201	Course Title: FOREIGN LANGUAGE - JAPANESE											
		(Common to all B.E/B.Tech Programmes)										
Course Category:AEC	Coui	rse Level: Inti	roductory									
L:T:P (Hours/Week) 3: 0: 0		Credits:3	Total Contact Hours:45	Max. Marks:100								

The course objectives intended to:

1. Express a basic exposure on Japanese language and culture

2. Express thoughts and communicate in the beginner level of

Japanese with nativeJapanese speaker

- 3. Identify the kanji etymology as well as use it in basic vocabulary required for theJLPT/NAT 5 examination level
- 4. Read and write 100 kanji of the official JLPT N5
- 5. Choose the appropriate verb forms for learning and practicing the Japaneselanguage

UNIT I Introduction to Japan and greetings 9 Hours Japan : Land and culture - Introduction to Japanese language – Greetings – Seasons - Days

of the week - Months of the year - Dates of the month - Self introduction - Numbers (Upto

99,999) – Expressing time – Conversation audio and video.

Listening: Listening to Greetings - Listening for Specific Information: Numbers, Time.

Speaking: Self-Introduction

UNIT II **Building vocabulary**

Family relationships - Colours - Parts of body - Profession - Directions - Time expressions

(today, tomorrow, yesterday, day before, day after) - Japanese housing and living style -

Food and transport (vocabulary) - Stationery, fruits and vegetables

Listening: Listening for Specific Information: Directions, Family Members, Parts of bodv

Speaking: Introducing one's family.

UNIT III Writing systems

Hiragana Chart 1 - vowels and consonants and related vocabulary – Hiragana Charts

2&3, double consonants, vowel elongation and related vocabulary – Introduction to Kanji

- Basic Vocabulary - Basic Conversational Phrases.

Japanese Alphabet Pronunciation, Simple Conversation. Listening: Listening to Speaking: Pair Activity (Day to day situational conversation)

UNIT IV Kanji and preposition 9

Katakana script and related vocabulary – Basic kanjis: naka, ue, shita, kawa, yama, numbers (1-10,100, 1000, 10,000 and yen), person, man, woman, child, tree, book, hidari, migi, kuchi, 4directions - Usage of particles wa, no, mo and ka and exercises - Usage of kore, sore, are, kono, sono, ano, arimasu and imasu - Particles - ni (location) and ga,

9 Hours

9 Hours

Hours

donata and dare - Particles ni (time), kara, made , ne , koko, soko, asoko and doko - Directions : kochira, sochira, achira and dochira , associated vocabulary (mae, ushiro, ue, shita, tonari, soba, etc.)

Listening: Listening to conversation with related particles

UNIT V Verb forms

9 Hours

Introduction to Verbs - Verbs - Past tense, negative - i-ending and na-ending adjectives introduction -

~masen ka, mashou - Usage of particles de, e , o, to, ga(but) and exercises - Adjectives (present/past – affirmative and negative) – Counters - ~te form

Listening: Listening to different counters, simple conversations with verbs and adjectives.

Speaking: Pair Activity (Explaining one's daily routine by using appropriate particles and verbs)

Course Outcomes					
At the end of this course, students will be able to:	Cognitive Level				
CO1: Recognize and write Japanese alphabet	Understand				
CO2: Comprehend the conversation and give correct meaning	Understand				
CO3: Apply appropriate vocabulary needed for simple conversation in Japanese language	Apply				
CO4: Apply appropriate grammar to write and speak in Japanese language	Apply				
CO5: Speak using words of the Japanese language	Apply				

Text Book(s):

- T1. Genki 1 Textbook: An Integrated Course in Elementary Japanese by Eri Banno, Yokolkeda, Yutaka Ohno, Yoko Sakane, Chikako Shinagawa, Kyoko Tokashiki published by The Japan Times
- T2. Genki 1 Workbook: An Integrated Course in Elementary Japanese by Eri Bannopublished by The Japan Times

Reference Book(s):

R1. Japan**e**se for Everyone: Elementary Main Textbook1-1, Goyal Publishers andDistributors Pvt. Ltd., Delhi, 2007

R2. Japanese for Everyone: Elementary Main Textbook1-2, Goyal Publishers and Distributors Pvt. Ltd., Delhi, 2007

- 1. www.japaneselifestyle.com
- 2. <u>www.learn-japanese.info/</u>
- 3. www.learn.hiragana-katakana.com/typing-hiragana-characters/
- 4. <u>www.kanjisite.com/</u>

Course Articulation Matrix

СО	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO4	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO5	-	-	-	-	-	-	-	-	2	3	-	1	-	-

High-3; Medium-2; Low-1

Course Code:22ELT202	Course Title: FOREIGN LANGUAGE - GERMAN									
Course Coue.23FL1202	(Common to all B.E/B.Tech Programmes)									
Course Category: AEC		Course Level: Introducto	ory							
L:T:P (Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours:45	Max. Marks:100							

The course is intended to:

- 1. Listen and understand numbers, names and dialogues of a native speaker on par with A1 level.
- 2. Speak and introduce self in simple sentences to convey their opinion and ideas on par with A1 level.
- 3. Read simple passages and given text on par with A1 level.
- 4. Write letter and simple sentences on par with A1 level.

UNIT I BASIC INTRODUCTION TO GERMAN SCRIPTS

Theme and Text (Introduction to German - German script, Deutsche Namen, Daily Greetings and Expressions) – Grammar ('wh' questions, das Alphabet)– Speak Action (Buchstabieren, sich und andere vorstellen nach Namen und Herkunft fragen, internationale Wörter auf Deutsch verstehen, jemanden begrüßen)– pronunciation (Buchstabieren J,V,W,Y, - Long vowels A,E,I,O,U - Pronunciation of Ä,Ü,Ö) – To learn (internationale Wörter in Texten finden, Wörter sortieren) Theme and Text (Gespräche im caf'e, Getränkekarte, Telefon-buch, Namen, Rechnungen) –Grammar (Frägesatze mit wie, woher, wo, was Verben in präsens Singular und Plural, das Verb Sein, Personalpronomen und Verben)– Speak Action (eine Gespräch beginnen sich und andere vorstellen zählen, etwas bestellen und bezhalen Telefonnummern und verstehen)– pronunciation (Wortakzent in Verben und in Zahlen) – To learn (Grammatiktabelle ergänzen, mit einem Redemittelkasten arbeiten)

UNIT II NUMBERS AND NOMINATIVE CASE

Theme and Text (Numbers – 1 to 12 (Eins bis Zwolf) – 20, 30, 40, 90 (zwanzig-Neunzig) – All Numbers (1-10000) – German Currency (Euro) – Basic Mathematics (plus, Minus, Malen, Geteilt durch)) – Grammar (Introduction of verbs –Have Verb – To Come, To Speak, To Read, To Drive, To Fly, To write, To Eat, To sleep, To take etc.,) Theme and Text (Communication in course) – Grammar (Singular and Plural, Artikel: der,das,die/ein,eine, verneinung: kein, keine, Komposita: das Kursbuch) – Speak Action (Gegenständen

9

9

fragen/ Gegenstände benennen im kurs:) – pronunciation (word accent Marking, Umlaute ö ä ü hören und sprechen) – To learn (Lernkarten schreiben, Memotipps, eine Regel selbst finden) Theme and Text (City, Town, Language: Nachbar, Sprachen, Sehenswürdigkeiten in Europa) – Grammar (Past tense for Sein, W-Frage, Aussagesatz und Satzfrage) – Speak Action (about city and siteseeing) – pronunciation (Satzakzent in Frage- und Aussagesätzen) – To learn (eine Regel ergänzen, eine Grammatiktabelle erarbeiten, Notizen machen)

UNIT III AKKUSATIVE CASE AND PREPOSITIONS

9

Theme and Text (Menschen und Hauser, Furniture catalogue, E-Mail, House information) – Grammar (possesivartikel im Nominativ, Artikel im Akkusativ, Adjektive im satz, Graduierung mit zu)– Speak Action (Whonung bescreiben about perons and things)– pronunciation (consonant-ch) – To learn (wortschatz systematisch)

Theme and Text (Termine - Appointment and punctuality in Germany) – Grammar (questions with wann?, Preposition (am, um, von. bis), verneinung mit nicht, trennbare verben, präteritum von haben) – Speak Action (Daily plan making, time commitment, excuse for late coming) – pronunciation (consonants- p,b,t,d / k,g) – To learn (Rollenkarten arbeiten)

Theme and Text (orientation in working area, go for work, floor plan city plan, office and computer) – Grammar (preposition: in,neben, unter, auf, vor, hinter, an, zwischen, bei und mit + Datic)– Speak Action (work place, work, giving appointments)– pronunciation (consonants: f,w und v) – To learn (Making notice in calender)

UNIT IV DATIV CASE AND PREPOSITIONS

Theme and Text (Holiday and Party, holiday plan, party plan in Germany) – Grammar (regular and iregular verbs) – Speak Action (holiday speak, accident, Ich-Text schreiben) – pronunciation (lange und kurze vokale markieren) – To learn (Text Order)

Theme and Text (organising an Excursion to Berlin through city orientation, Bus plan, City plan, post card, Excursion programme) – Grammar (preposition: in, durch, über + Akkusativ: zu, an... vorbei + Dativ, Modalverb wollen) – Speak Action (Tourism, culture, postcard preparation, travel description) – pronunciation (r and I)– To learn (plaket making)Theme and Text (Beruf und all Tag, Visiten karten, wörterbuch) – Grammar – Speak Action (profession, statistic speaking) – pronunciation (n,ng and nk)– To learn (wörterbuch , text information in tabel)

UNIT V ADJECTIVES AND PRONUNCIATION

9

9

Theme and Text (Haushaltstipp, kochrezept, maße und gewichte, Mahlzeiten und Gerichte) – Grammar (jeden Tag, manchmal, nie, Question - welche, Comparison – viel, gut, gern) – Speak Action (about eat, drink question and answers) – pronunciation (e,en,el,er) – To learn (Text auswerten und zusammenfassen)

Theme and Text (Clothing, colour, weather) – Grammar (Adjecktive im Akkusativ, unbestimmer Artikel) – Speak Action (weather, dress and colour understanding) – pronunciation (e-o- ö and ie-uü) – To learn (wetter and Farben interkulturelle)

Theme and Text (in super market,purchase, House Maintainence, Emotion, Sports, Body parts)– Grammar (Modal Verb) – Speak Action (Body parts) – To learn (Rollenkarten arbeiten)

Total:45 Hours

Course Outcomes At the end of this course, students will be able to:	Cognitive Level		
CO1: Recognize and write German alphabet, numbers.	Understand		
CO2: Comprehend the conversation and give correct meaning	Understand		
CO3: Apply appropriate grammar and vocabulary to write and speak.	Apply		
CO4: Apply appropriate cases and texts to listen, write and speak.	Apply		
CO5: Speak and read using words of the German language	Apply		

Text Book (s):

T1. Netzwerk, "Deutsch als Fremdsprache" by Stefanie Dengler, Paul Rusch, Helen Schmitz published

T2. Funk, Kuhn, Demme, "Studio D A1 Deutsch als Fremdsprache" published by Goyal Publishers &Distributors Pvt Ltd;

Reference Book(s):

R1. Hueber, "Fit for Goethe- Zertifikat A1 (Start Deutsch 1)" by Goyal Publishers and Distributors; 2016

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO4	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO5	-	-	-	-	-	-	-	-	2	3	-	1	-	-

High-3; Medium-2;Low-1

Course Code: 23MAI2	202	Cou (Coi	urse Title: Complex Variables and Transforms ommon to AU, EC, EE, EV & ME)						
Course Category: M	inor		Course Level: Introductory						
L:T:P(Hours/Week) 3:0 :2	Credits: 4		Total Contact Hours:75	Max Marks:100					

This course is intended to enable the student to acquire the knowledge on the calculus of functions of complex variables and continuous, discrete transforms.

Module I

23 Hours

Vector Calculus

Gradient – Divergence – Curl – Line integrals – Surface integrals – Volume integrals – Theorems of Green, Gauss and Stokes (without proof) and their applications.

Complex Variables (Differentiation)

Cauchy-Riemann equations – Analytic functions – Properties – Harmonic functions – Finding harmonic conjugate – Conformal mapping (w=z+a, w=az, w=1/z,) – Mobius transformation and their properties.

Complex Variables I (Integration)

Cauchy Integral formula – Cauchy Integral theorem – Taylor's series – Singularities of analytic functions – Laurent's series.

Module II

22 Hours

Complex Variables II (Integration)

Residues – Cauchy Residue theorem – Contour integrals – Evaluation of real definite integrals around unit circle and semi-circle (Excluding poles on the real axis).

Laplace Transform

Laplace Transform – Properties of Laplace Transform – Laplace transform of derivatives and integrals – Laplace transform of periodic functions -Inverse Laplace transforms - Convolution theorem – Solution of ordinary differential equations by Laplace Transform method.

Fourier Series

Dirichlet's condition -Fourier series – Even and odd functions- Half range sine and cosine series - Parseval's identity--Harmonic Analysis.

List of Experiments (Using Python):

- 1. Find gradient of a given scalar function, divergence and curl of a vector function.
- 2. Verify Green's theorem in a plane.
- 3. Graphically plot time and frequency domain of standard functions and compute Laplace transform of In- built functions.
- 4. Find the Fourier series of a periodic function.
- 5. Compute Inverse Laplace transform of In- built functions.

30 Hours

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Explain the concepts of Vector Differentiation and Integration.	Apply
CO2: Using the concept of complex variables to construct analytical functions and evaluate definite integrals.	Apply
CO3: Apply Laplace transform techniques to solve ordinary differential equations.	Apply
CO4: Compute the Fourier series expansion for given periodic functions.	Apply
CO5: Develop programs using Complex Variables and Transforms concepts through modern tool.	Apply

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-	-	-

High-3; Medium-2;Low-1

Text Book(s):

- T1. Erwinkreyzig, Advanced Engineering Mathematics, 10th edition, John Wiley& Sons, 2011.
- T2. Veerarajan T., Engineering Mathematics for first year, 3rd edition, Tata McGraw-Hill, New Delhi, 2019.

Reference Book(s):

- R1. G.B.Thomas and R.L Finney, Calculus and Analytic Geometry, 9th edition, Pearson, Reprint, 2002.
- R2. B.S.Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- R3. P. Sivaramakrishna Das , C. Vijayakumari , Engineering Mathematics, Pearson India, 2017.

- 1. https://nptel.ac.in/courses/111107112
- https://nptel.ac.in/courses/111104031

Course Code: 23PH	201	Course Title: Physics for Electrical Sciences (Common to EA, EC, EE & EV)				
Course Category: M	inor	Course Level: Introductory				
L:T:P(Hours/Week) 3: 0: 2	Credits: 4	Total Contact Hours:75	Max Marks:100			

The course is intended to impart knowledge on the fundamental laws and relations in electricity, magnetism, electromagnetism and electromagnetic waves.

Module I

22 Hours

Electrostatics: Definition of electric charge-Coulomb's Law – Electric field intensity – Field intensity due to point and line charges – Electric flux density -Gauss's law- Application of Gauss's law: Determine the field due to a line charge and a plane sheet of charge – Electric potential-Equipotential surfaces-Potential gradient.

Magnetostatics: Definition of magnetic flux- magnetic field intensity-Lorentz Law offorce-Biot – Savart law, Ampere's Law- Application of Ampere's Law: Magnetic induction due to a long linear conductor and solenoid - Magnetic field due to straight conductors- circular loop – Magnetic flux density (B) - Magnetic potential.

Electric Fields in Materials: Dielectrics: An atomic view - Dielectric Polarization-Dielectrics and Gauss's law- Dielectric Strength- Energy stored in a dielectric medium -Capacity of a condenser - Capacitance - coaxial, Spherical capacitor- Poisson and Laplace Equation.

Module II

23 Hours

Magnetic Fields in Materials: Magnetic susceptibility and permeability- properties of dia, para and ferro magnetic materials-hysteresis loop.

Electromagnetic Induction: Faraday's law – Lenz's law – Time varying magnetic field - self Inductance - self Inductance of a solenoid- Mutual inductance- Mutual inductance of two solenoids. Charge conservation law - continuity equation- displacement current-Maxwell's equations.

Electromagnetic Waves: Electromagnetic waves in free space - Poynting vector - Propagation of electromagnetic waves in dielectrics – Phase velocity- Propagation of electromagnetic waves through conducting media- penetration or skin depth.

List of Experiments (Any six)

30 Hours

- 1. Verification of Ohms' law.
- 2. Test the Faraday's hypothesis of magnetic field induction.
- 3. Determination of specific resistance of the given material using Carey foster's bridge.
- 4. Measurement of capacitance using Schering Bridge.
- 5. Measurement of inductance using Maxwell Bridge.
- 6. Determination of wavelength of the given light source using spectrometer.
- 7. Determination of Dielectric constant of a given Material.

Course Outcomes	Cognitive
At the end of the course students will able to	Level
CO1: Apply the concepts of static electric and magnetic fields to	Apply
obtain the electric and magnetic characteristics of the materials.	Арріу
CO2: Interpret the behavior of materials in electric and magnetic	Apply
fields.	Арріу
CO3: Apply the concept of time-varying electric and magnetic fields	
to obtain the propagation characteristics of electromagnetic waves in	Apply
different media.	
CO4: Conduct, analyze and interpret the data and results from the	Evoluato
physics laboratory experiments.	

Course Articulation Matrix

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	I	-	-	I	I	I	I	I	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	-	3	-	-	-	-	-	-	-	-	-	-

High-3; Medium-2; Low-1

Text Book(s):

- T1.R.K.Gaur and S.L.Gupta, "Engineering Physics", Dhanpat Rai publications, New Delhi, 8th Edition, 2011.
- T2.W. H. Hayt and John A. Buck, "Engineering Electromagnetics", Tata McGraw Hill, New Delhi, 6th Edition, 2014.

Reference Book(s):

- R1. David Griffiths, "Introduction to Electrodynamics", Pearson Education, 4th Edition, 2013
- R2. K. A. Gangadhar and P. M. Ramanathan, "Electromagnetic Field Theory", Khanna
- Publishers, New Delhi, 5th Edition, 2013.
 Mathew. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 4th Edition, 2009.

- 1. http://nptel.iitm.ac.in
- 2. http://openems.de/start/index.php
- 3. https://bop-iitk.vlabs.ac.in/List%20of%20experiments.html

Course Code: 23ECT001	Course Title: Circuit Theory (Common to EA ,EC&	EV)				
Course Category: Major	Course Level: Introducto	Course Level: Introductory				
L:T:P(Hours/Week) Cred 3:0:0	its:3 Total Contact Hours:45	Max Marks:100				

The course is intended to impart knowledge of the fundamentals of Electric circuits and its analysis.

Module I

23 Hours

Fundamentals of Electric Circuits: Ohm's law - Kirchoff's Laws –Series resistive circuit- Voltage division rule- Parallel resistive circuit – Current division rule– Source transformation – Star to delta and delta to star transformation

Time period, Frequency, Angular frequency, Average value, Root mean square value, Form factor and Peak factor of sinusoidal.

Analysis of DC and AC Circuits: Mesh and node method of analysis - Networks theorem: Superposition Theorem, Thevenin's Theorem, Norton's theorem and Maximum power transfer theorem.

Module II

22 Hours

Resonance and Coupled Circuits: Series resonance-Voltage and Current in a series resonance, Impedance and phase angle. Parallel resonance-Resonant frequency - Variation of Impedance with frequency Coupled circuits- mutual inductance, Coefficient of coupling.

Transient Response of Networks: Steady state and Transient response - Response of an R-L, R-C and R-L-C circuits under DC excitation.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Define, understand, and explain the various laws for analyzing	Understand
Electric circuits.	
CO2: Apply the knowledge of network laws and theorems to the given	Apply
electric circuit to obtain the required parameters.	
CO3: Analyze the resonance and transient behaviour of the given electric	Analyze
circuit using appropriate mathematical tools.	

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	-	3	-	-	-	-	-	-	-	-	-	-	-	-

High-3; Medium-2; Low-1

Text Book(s):

T1.Sudhakar A, Shyammohan S. Pillai "Circuits and Networks -Analysis and Synthesis", McGraw Hill., New Delhi, 2015

Reference Book(s):

- R1. William H. Hayt and Jack E. Kemmerly, "Engineering Circuit Analysis ", McGraw Hill International Edition, 2006
- R2. Singh "Network Analysis and Synthesis", McGraw-Hill Education., New Delhi, 2013
- R3. M. Arumugham and N.Prem kumar, "Electric Circuit Theory", Khanna publishers, 2010
- R4. Alexander C, Sadiku M. N. O "Fundamentals of Electric Circuits", Tata McGraw Hill., New Delhi, 2013

- 1. http://nptel.ac.in/video.php?subjectId=108102042
- 2. http://nptel.ac.in/courses/108102042/
- 3. http://nptel.ac.in/courses/108105053/
- 4. http://freevideolectures.com/Course/2336/Circuit-Theory/

Course Code: 23ITT202			ourse Title: Problem solving and Python rogramming Common to EA, EC & EV)				
Course Category: Multidisciplinary			Course Level: Introductory				
L:T:P(Hours/Week) 3: 0: 0	Credits:3		Total Contact Hours:45	Max Marks:100			

The objective of the course is to introduce learners to the fundamentals of programming using the Python language. The course aims to equip participants with the necessary skills and knowledge to write efficient, readable, and maintainable Python code.

Module I

Basics of Python: Features - Variables and Data Types - Expressions and Statements - Operators.

Control Flow: Conditional Statements – Looping and Iterative Statements

Functions and File Handling: Introduction to Functions - Recursive Functions - Introduction

to Files and File Handling

Data Structures in Python: Lists: Functions and Methods - Tuples: Operations and Built-in

Functions - Sets: Functions and Methods - Dictionaries: Functions and Methods - Strings: Operators and Built-In String Functions

OOP Concepts: Classes and Objects: Modifiers in Classes - Method Invocation in Classes

- Inheritance and Polymorphism.

Module II

Exception Handling: Errors and Exceptions

GUI Programming with TKinter: GUI Basics - Working with the TKinter Library

Widgets and Events: Adding Widgets and Binding Events - Message and Entry Widgets -Checkboxes and Radio Buttons - Menus and Lists - Canvas for Drawing

Data Visualization with Matplotlib: Introduction to Matplotlib Library - Line and Bar Plots - Scatter Plots - Pie Charts - Working with Multiple Figures - 3D Plots - Plotting Using Files.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Apply Python programming constructs and data structure techniques to solve practical problems and build functional applications.	Apply
CO2: Categorize the OOPs concepts to create modular and extensible Python programs.	Analyze

22 Hours

23 Hours

CO3: Infer the errors and exceptions in Python programs using exception	Analyze
handling techniques to ensure robust and fault-tolerant code	
CO4: Build graphical user interfaces (GUIs) using TKinter, effectively	Apply
incorporating various widgets and event binding to create interactive	
and visually appealing applications	
CO5:. Employ the Matplotlib library for data visualization to present data	Apply
and insights in a visually impactful method	
CO6: Combine the Python language features and libraries to provide	Create
solutions collaboratively with Ethical values to the practical problems	

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	3	2	2	-	-	3	3	3	3	3

High-3; Medium-2; Low-1

Text Book(s):

- T1. Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers, "How to Think Like a Computer Scientist: Learning with Python",3rd Edition, O'Reilly, 2020.
- T2. Mark Lutz, "Powerful Object-Oriented Programming Python", 4th Edition, O'Reilly, 2013.

Reference Book(s):

R1. Mark Lutz, "Learning Python, Powerful OOPs", 5th Edition, O'Reilly, 2013.

R2. Zelle, John M, "Python Programming: An Introduction to Computer Science", Franklin Beedle& Associates, 2003.

- 1. https://docs.python.org/3/tutorial/
- 2. https://www.learnpython.org/
- 3. https://www.pyschools.com/
- 4. https://archive.nptel.ac.in/courses/106/106/106106182/

Course Code: 22MEL	001	Course Title: ENGINEERING DRAWING				
Course Code: 23MEL	.001	(Common to AD,AM,AU,CS,EA ,EC,EE,EV,IT,ME, SC)				
Course Category: Multidisciplinary		Course Level: Introductory				
L:T:P(Hours/Week)	Crodite:2.5	Total Contact Hours: 60	Max Marks:100			
1: 0: 3	Cieulis.2.J		WAA WAI NS. 100			

The course is intended to

 To impart knowledge on basic dimensioning. 2D and 3 D drawings such as points, lines, planes and solids on first quadrant.

Module I Hours

Basics of Engineering Drawing: Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Basic Geometrical constructions –Orthographic projection-Free hand Sketching.

Projection of Points, Lines: First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces by rotating object method.

Projection of Solids: Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one of the principal planes by rotating object method. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination).

Module II Hours

Sectioned Solids: Sectioning of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by cutting planes inclined to one reference plane and perpendicular to the other – Orthographic views of sections of simple solids.

Development of Surfaces: Development of lateral surfaces of simple and truncated solids – Prisms, pyramids, cylinders using straight line and radial line method.

Isometric Projection: Principles of isometric projection – Isometric scale –Isometric projections of simple solids and truncated solids. Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination).

7

8

List of Experiments

- 1. Lettering & Dimensioning
- 2. Projection of Points & Lines
- 3. Orthographic projections
- 4. Projection of Simple Solids
- 5. Projection of Section of Simple Solids
- 6. Development of Surfaces
- 7. Isometric Projections

Course Outcomes:

Course Outcomes		
At the end of this course, students will be able to:	Cognitive Level	
CO 1: Apply the concepts related to free hand sketching, orthographic and Isometric	Understand	
projection in first quadrant.	Understand	
CO2: Apply the concepts and draw projections of points in four different quadrants	Apply	
and lines located first quadrant.	дрру	
CO3: Apply the concepts and draw projections and sections of simple solids using	Apply	
rotating object method.	Арріу	
CO4: Apply the concepts and draw lateral surface of simple solids using straight	Apply	
line and radial line development methods.	Арріу	
CO5: Apply the concepts and draw isometric view of simple solids and truncated	Apply	
solids using principles of isometric projection.	Арріу	
CO6: Conduct experiments to demonstrate concepts, implement and analyze the		
drawing concepts using engineering tool: Using AutoCAD.	Analyze	

Text Book(s):

T1. Cencil Jensen, Jay D.Helsel and Dennis R. Short, "Engineering Drawing and Design", Tata McGraw Hill India, New Delhi, 3rd edition, 2019.

Reference Book(s):

- R1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill India, New Delhi, 2nd edition, 2014.
- R2. Dhananjay A. Jolhe, "Engineering Drawing with an introduction to AutoCAD" Tata McGraw India, New Delhi, 3rd edition, 2010.
- R3. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, Gujarat, 54rd edition, 2023.

PUBLICATIONS OF BUREAU OF INDIAN STANDARDS

- IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.IS 9609 (Parts 0 & 1) – 2001: Technical products Documentation – Lettering.
 IS 10714 (Part 20) – 2001 & SP 46 – 2003: Lines for technical drawings.IS 11669 – 1986 &
 - SP 46 2003: Dimensioning of Technical Drawings.
- 3. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods. The mode of delivery is like practical.

Web References:

- 1 http://nptel.ac.in/courses/112103019/
- 2 https://www.coursera.org/specializations/autodesk-cad-cam-cae-mechanical-engineering

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	3	-	-	3	-	-	-	1	1	-	1	-	-

Course Articulation Matrix

High-3; Medium-2; Low-1

Course Code: 23ECL	001 (C	Course Title: Electric Circuits and Electron Devices Laboratory (Common to EA, EC & EV)				
Course Category: Ma	jor	Course Level: Introductory				
L:T:P (Hours/Week) 0:0:3	Credits:1.5	Total Contact Ho	ours:45	Max Marks:100		

The course is intended to verify the electric circuit, network theorems and characteristics of the basic electronic devices.

List of Experiments:

- 1. PN Junction Diode and Zener diode Characteristics
- 2. Half wave and Full wave Rectifier circuits
- 3. Regulator using Zener diode
- 4. Wave shaping circuits: Clippers and clampers
- 5. Characteristics of Common Emitter configuration
- 6. Characteristics of Common Base configuration
- 7. FET characteristics and its application as a switch
- 8. Verification of Kirchhoff's Voltage and Current laws
- 9. Verification of Super Position Theorem
- 10. Verification of Thevenin's and Norton's theorems
- 11. Verification of Maximum Power transfer theorem
- 12. Determination of Resonance frequency of Series & Parallel RLC Circuits

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Levei
CO1: Conduct experiments to verify the characteristics of devices and theorems for Electric circuits.	Evaluate
CO2: Compare the experimental results obtained during verification of network theorems with simulation results.	Analyze

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	3	-	-	-	-	1	1	-	-	-	-
CO2	-	3	-	-	3	-	-	-	-	-	-	1	1	-

High-3; Medium-2; Low-1

Reference:

1. Laboratory Manual Prepared by Faculty of Electronics and Communication Engineering,

Dr. Mahalingam College of Engineering and Technology.

Course Code: 23ESL20 ⁴	1	Course Litle: Professional Skills 1: Problem solving skills & Logical Thinking 1 (Common to all B.E/B.Tech Programmes)				
Course Category: SEC		Course Level: Introductory				
L:T:P(Hours/Week) 0: 0: 2	Credits: 1	Total Contact Hours:30	Max Marks:100			

To enhance the students' numerical, analytical and logical reasoning ability.

To make them prepare for various public and private sector exams and placement drives.

Module I Quantitative Ability

Number System and LCM & HCF- Percentage- Ratio and Proportion - Average-Progressions- Ages-Partnership- Mixture & Allegation - Profit and loss- Interest calculation-Data interpretation.

Module II Reasoning Ability

Seating Arrangement- Linear, circular and Complex – Direction Problems- Blood Relation-Puzzles- Crypt arithmetic- Venn diagrams- Statement and conclusion- Statement and argument- Causes and effects- Self-Learning.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Build the competence in numerical, analytical and logical	Apply
Reasoning ability	

Course Articulation Matrix

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	3	-	-

High-3; Medium-2; Low-1

20 Hours

10 Hours

Textbook(s):

- **T1:** Dr. R. S. Aggarwal. "Quantitative Aptitude for Competitive Examinations" Sultan Chand & Sons Pvt. Ltd, New Delhi, 2018.
- **T2:** Dr. R. S. Aggarwal. "A Modern Approach to Logical Reasoning", Sultan Chand & Sons Pvt. Ltd, New Delhi, 2018

Reference Book(s):

- **R1:** R. V. Praveen. "Quantitative Aptitude and Reasoning" 2nd Revised Edition, Prentice-Hall of India Pvt.Ltd, 2013
- **R2:** Arun Sharma. "Quantitative Aptitude for Common Aptitude Test", McGraw Hill Publications, 5th Edition, 2020
- **R3:** Arun Sharma. "Logical Reasoning for Common Aptitude Test", McGraw Hill Publications, 6th Edition, 2021.

- 1 https://www.indiabix.com/aptitude/questions-and-answers/
- 2 https://www.geeksforgeeks.org/aptitude-questions-and-answers/

Course Code: 23VAT201	Course Ti (Common	Course Title: TAMILS AND TECHNOLOGY (Common to all B.E/B.Tech Programmes)				
Course Category: VAC		Course Level: Introductory				
L:T:P (Hours/Week) 1: 0 :0	Credit: 1	Total Contact Hours: 15	Max Marks:100			

Pre-requisites

> NIL

Course Objectives

மாணவாகள் இப்பாடத்தை கற்றலின் மூலம்

- CO.1 நெசவு மற்றும் பானைத் தொழில்நுட்பம், வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம், உற்பத்தீத் தொழில்நுட்பம், வேளாண்மை மற்றும் நீா்ப்பாசனத் தொழில்நுட்பம் ஆகியன குறித்து அறிந்து கொள்ள இயலும்.
- CO.2 அறிவியல் தமிழ் மற்றும் கணினித் தமிழ் குறித்து அறிந்து கொள்ள இயலும்.

தமிழரும் தொழில்நுட்பமும்

அலகு 1 – நெசவு மற்றும் பானைத் தொழில்நுட்பம்

சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் – கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்

அலகு 2 – வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் ஷ சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு – சங்க காலத்தில் கட்டுமானப் பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் – மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழா் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கா் காலக் கோயில்கள் – மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கா் மஹால் – செட்டிநாட்டு வீடுகள், பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ – சாரோசெனிக் கட்டிடக் கலை.

அலகு 3 – உற்பத்தித் தொழில்நுட்பம்

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத் துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

З

З

З

அலகு 4 வேளாண்மை மற்றும் நீாப்பாசனத் தொழில்நுட்பம்

அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன் வளம் – முத்து மற்றும் முத்துக் குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

அலகு 5 – அறிவியல் தமிழ் மற்றும் கணினித் தமிழ்

அறிவியல் தமிழின் வளா்ச்சி – கணினித் தமிழ் வளா்ச்சி – தமிழ் நூல்களை மின் பதீப்பு செய்தல் – தமிழ் மென் பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக் கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TOTAL : 15 PERIODS

Cours	se Outcomes			
மாண	வா்கள் இப்பாடத்தை கற்றபின்	Cognitive Level		
CO.1	நெசவு மற்றும் பானைத் தொழில்நுட்பம், வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம், உற்பத்தித் தொழில்நுட்பம், வேளாண்மை மற்றும் நீா்ப்பாசனத் தொழில்நுட்பம் ஆகியன குறித்து அறிந்து கொள்வாா்கள்.	அறிதல் (Understand)		
CO.2	அறிவியல் தமிழ் மற்றும் கணினித் தமிழ் குறித்து அறிந்து கொள்வார்கள்.	அறிதல் (Understand)		

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-

High-3; Medium-2; Low-1

З

TEXT - CUM REFERENCE BOOKS

- 1 தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை வெளியீடு. தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவா் இல. சுந்தரம் (விகடன் பிரசுரம்)
- 3. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

Course Code: 23VAT201	Course Ti (Common	itle: TAMILS AND TECHNOL to all B.E/B.Tech Programmer	.OGY nes)			
Course Category: VAC		Course Level: Introductory				
L:T:P (Hours/Week) 1: 0 :0	Credit: 1	Total Contact Hours: 15	Max Marks:100			

Pre-requisites

> NIL

Course Objectives

The course is intended to:

- 1. Understand Weaving and Ceramic Technology, Design and Construction Technology, Manufacturing Technology, Agriculture and Irrigation Technology.
- 2. Understand the Scientific Tamil & Tamil Computing.

TAMILS AND TECHNOLOGY

UNIT I WEAVING AND CERAMIC TECHNOLOGY

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

3

3

3

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo -Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

TOTAL : 15 PERIODS

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO.1 Understand Weaving and Ceramic Technology, Design and Construction Technology, Manufacturing Technology, Agriculture and Irrigation Technology.	Understand
CO.2 Understand the Scientific Tamil & Tamil Computing.	Understand

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-

High-3; Medium-2; Low-1

3

3

TEXT - CUM REFERENCE BOOKS

- 1 தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை வெளியீடு. தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவா் இல. சுந்தரம் (விகடன் பிரசுரம்)
- 3. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL
 (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

Course Code: 23CHT2	202	Course Title: Environmental Sciences (Common to all B.E/B.Tech Programmes)					
Course Category: Multi	idisciplina	Course Level: Introductory					
L:T:P(Hours/Week) 1: 0: 0	Credits: Credit C	Mandatory Non- Course	Total Contact Hours: 15	Max Marks:100			

The course is intended to impart knowledge on sustainable utilization of natural resources, prevention of pollution, disaster management and environmental issues & public awareness on ecosystem.

Module I

8 Hours

Natural Resources

Role of individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

Environmental Pollution and Disaster Management

Role of an individual in prevention of pollution; Disaster management : floods, earthquake, cyclone and landslides.

Environmental Ethics and Legislations

Environmental ethics : Environment Protection Act; Air Act; Water Act ; Wildlife Protection

Act; Forest Conservation Act; Issues involved in enforcement of environmental legislation.

Module II

Environmental Issues and Public Awareness

Public awareness - Environment and human health.

Environmental Activities

(a) Awareness Activities:

- i. Small group meetings about water management, promotion of recycle use, generation of less waste, avoiding electricity waste.
- ii. Slogan making event.
- iii. Poster making event.

(b) Actual Activities:

- i. Plantation.
- ii. Cleanliness drive.
- iii. Drive for segregation of waste.
- iv. To know about the different varieties of plants.
- v. Shutting down the fans and ACs of the campus for an hour or so.

7 Hours

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Explain the use of natural resources for a sustainable life as an individual in prevention of pollution.	Understand
CO 2: Apply the environmental ethics and legislations for various environmental issues.	Apply
CO 3: Create the public awareness on environment and human health as an individual or team through various activity based learning.	Apply

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
CO1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	3	3	-	-	-	-
CO3	3	-	-	-	-	3	3	-	3	3	-	-

High-3; Medium-2;Low-1

Text Book(s):

- T1. Benny Joseph, "Environmental Studies", Tata McGraw Hill, New Delhi, 2006.
- T2. Mackenzie Davis and Susan Masten, "Principles of environmental engineering and science", Mc-Graw Hill, 3rd Edition, 2014.

Reference Book(s):

- R1. Trivedi R.K. "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, Enviro Media.
- R2. Cunningham, W.P.Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publishing House, Mumbai, 2001.

- 1. https://onlinecourses.nptel.ac.in/noc23_hs155/preview.
- 2. https://en.wikipedia.org/wiki/Environmental_science.

SEMESTER III

Course Code: 23MAI301		Course Title: Numerical Techniques and Linear Algebra				
Course Category: Minor		Course Level: Intermediate				
L:T:P(Hours/Week) 3:0 :2	Credits: 4	Total Contact Hours:75	Max Marks:100			

This course is designed to give an overview of numerical methods and provide knowledge and skills needed to apply these tools and techniques for decision making in various fields of science and engineering.

Module I

Solution of System of Linear Equations and Eigenvalue

Solution of system of linear equations- Direct methods: Gaussian elimination method -Indirect methods: Gauss Jacobi method, Gauss-Seidel method- sufficient conditions for convergence – Solution of nonlinear equations: Newton Raphson method – Power method to find the dominant Eigen value and the corresponding Eigen vector – Application of Eigen value and the corresponding Eigen vector.

Interpolation, Numerical Differentiation and Integration

Interpolation – Newton's forward, backward interpolation – Lagrange's interpolation. Numerical Differentiation and Integration – Trapezoidal rule – Simpson's 1/3 rule – Double integration using Trapezoidal rule.

Numerical Solution of Ordinary Differential Equation

Numerical solution of first order ordinary differential equation-Single step method: Taylor's series- Euler's method - Runge-Kutta method of fourth order - Multi step method: Milne's predictor corrector methods for solving first order differential equations.

Module II

Vector Spaces

Vector spaces- Subspace of a vector space- basis and dimension of vector space - linear combination and spanning sets of vectors - linear independence and linear dependence of vectors - Row space, Column space and Null space - Rank and nullity of subspaces.

Orthogonality and Inner Product Spaces

Inner product of vectors: length of a vector, distance between two vectors, and orthogonality of vectors - Orthogonal projection of a vector - Gram-Schmidt process to produce orthogonal and orthonormal basis - Inner product spaces.

List of Experiments:

- 1. Use python to solve system of linear equations using Gauss elimination method.
- 2. Use python to solve algebraic and transcendental equation by Newton Raphson method.
- 3. Use python to interpolate using Newton's forward and backward interpolation method.
- 4. Use python to solve first order ordinary differential equation using Range kutta method of 4th order.
- 5. Use python to find the basis of row space, column space and null space of a given matrix.
- 6. Use python to compute the inner product of two vectors and to check whether the given vectors are orthogonal.

30 Hours

23 Hours

22 Hours

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Levei
CO1: Solve the system of linear equations, nonlinear equations & calculate the dominant Eigen value	Apply
CO2: Determine the unknown values from the given set of data & Compute derivatives and integrals.	Apply
CO3: Solve first order ordinary differential equation using Numerical Techniques.	Apply
CO4: Apply the concept of vector spaces and inner product spaces to produce orthogonal and orthonormal basis.	Apply
CO5: Apply the concepts of Numerical techniques and Linear Algebra to electrical and electronics engineering.	Apply
CO6: Apply the concepts of Numerical techniques using modern tools and report the result and inference. (For laboratory content only)	Apply

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	1	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	1	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	1	-	-
CO5	2	-	-	-	-	-	-	-	-	1	-	1	-	-
CO6	-	-	-	-	3	-	-	-	1	-	-	1	-	-

High-3; Medium-2;Low-1

Text Book(s):

T1. Grewal, B.S. and Grewal, J. S., "Numerical Methods in Engineering and Science",

Eleventh Edition, Khanna Publishers, New Delhi, 2013.

T2. Curtis F. Gerald, Patric.O. *W*heatley, "Applied Numerical Analysis", Seventh Edition, Pearson Education, Asia, New Delhi, 2009.

Reference Book(s):

R1. Steven Chopra, Raymond.P. Canale, "Numerical Methods for Engineers", Seventh Edition, 2015.

R2. Jain M.K, lyengar.S.R. K and Jain.R. K, "Numerical Methods for Scientific and

Engineering Computation", Sixth Edition, New Age Publishers, 2012.

R3. Gilbert Strang, "Linear algebra and its applications", Fourth Edition, Cengage Learning(RS), 2012.

- 1. http://nptel.ac.in/courses/122104018/node2.html
- 2. http://nptel.ac.in/courses/111105038

Course Code: 23EVT301		Course Title: Digital Electronics				
Course Category: Major		Course Level: Intermediate				
L:T:P(Hours/Week)3:0:0	Credits:3	Total Contact Hours:45	Max Marks:100			

The course is intended to teach Boolean laws, simplification techniques and implement the same to design combinational, synchronous sequential, and asynchronous sequential circuits. Moreover, the course imparts a knowledge on the design of various memory devices, shift registers.

Module I

23 Hours

Boolean Algebra: Basic theorems, Representation of Boolean function in canonical and standard forms- Karnaugh Map – Quine McClusky minimization technique (4-variable), Basic gates, Universal realisation.

Logic Families: -Introduction - TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, CMOS- NAND, NOR realization.

Combinational logic circuits: Half adder – Full Adder – Half subtractor - Full subtractor – Parallel binary adder - 2's complement subtraction using parallel adders - Multiplexer/Demultiplexer – decoder - encoder - code converters - Magnitude Comparator.

Module II

22 Hours

Synchronous Sequential Circuits: Flip-flop and Latch: SR latches - JK flip-flop, T flip-flop, D flipflop-Master-slave JK flip-flop- Shift registers (SISO, SIPO, PISO, PIPO)-Universal shift register-Counters: - Mealy and Moore model – Design of Synchronous Counters-Modulus-n Counter - Up-Down counter- State Reduction- State assignment

Asynchronous Sequential Circuits: Analyze and design of asynchronous sequential circuits, Asynchronous/Ripple counters - FSM - Sequence detector - Vending Machine.

Memory and Logic Devices: RAM Memory decoding-ROM - Basic concepts: - Programmable Logic Devices (PLDs): Basic concepts - PROM as PLD-Programmable Array Logic (PAL) - Programmable Logic Array – Case Studies on Digital system design.
Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Develop the combinational circuits using logic gates implementing Boolean simplification	Apply
CO 2: Design the synchronous sequential circuits using basic Flip Flops	Apply
CO 3: Analyze the asynchronous sequential circuits for the given application	Analyze
CO 4: Apply the basic digital concepts in memory devices, and logic devices and present acase study as a team or individual.	Apply

CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	-	-	3	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO4	3	-	-	-	-	-	-	-	1	1	-	-	1	1

High-3; Medium-2;Low-1

Text Book(s):

T1. A.Anandkumar,"Fundamentals of digital circuits", 4th Edition, PHI Learning Pvt Ltd, 2016

T2. John F.Wakerly, "Digital Design Principles and Practice", Pearson Education,5th edition, 2018.

Reference Book(s):

R1.Malvino and Leach, "Digital Principles and Applications", Tata Mc Graw Hill, New Delhi,8th Edition, 2014.

R2.S.Salivahanan and S.Arivazhagan,"Digital Circuits and Design", Oxford University Press,5th Edition, 2018.

R3. Morris Mano.M.Michael D Ciletti, "Digital Design", Pearson Education, 4th Edition, 2008.

R4: John M.Yarbrough, "Digital Logic Application & Design", Thomson, 2010.

R5: Donald D.Givone, "Digital Principles and Design", TMH, 2003.

- 1. https://nptel.ac.in/courses/117105080/
- 2. https://nptel.ac.in/courses/117106086/

Course Code: 23EVT302		Course Title: Analog Electronics				
Course Category: Major		Course Level: Intermediate				
L:T:P(Hours/Week)3:0:0	Credits:3	Total Contact Hours:45	Max Marks:100			

The course is intended to impart knowledge on design and analysis of amplifier and oscillator circuitsusing BJTs and MOSFETs.

Module I

BJTs: Biasing -Load line, operating point, biasing techniques, stability, Analysis of CE amplifier - Gainand frequency response – Small signal model –Estimation of gain, input and output resistance, Basic operation of CB, CC amplifier.

Feedback Amplifiers: Advantages of negative feedback – Voltage / Current, Series, Shunt feedbackAmplifiers; Positive feedback–Condition for oscillations, Phase shift – Wien bridge, Hartley, Colpitt's and Crystal oscillators.

Module II

MOSFET: Analysis of CS amplifier - Load line, operating point, small signal model– Estimation of gain, input and output resistance, Basic operation of CG amplifier and Source follower. MOS Differential amplifier – Principle of operation, calculation of common mode gain and differential gain, slew rate, CMRR and ICMR. - Cascode and Cascade Amplifier.

Power Amplifiers: Class A, B, AB- push-pull Complementary amplifier, C – Calculation of power efficiency and linearity issues.

Course Outcomes At the end of this course, students will be able to:	Cognitive Level
CO 1: Construct amplifier circuits using B IT and derive equations for gain	Apply
inputand output resistance.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CO 2 : Construct oscillator circuits using BJT.	Apply
CO 3: Develop the MOSFET amplifier circuits and derive equations for gain, input and output resistance.	Apply
CO 4: Develop MOSFET power amplifiers and compare the power efficiency.	Apply
CO5: Select suitable amplifiers and oscillators based on the application, and present a report or seminar.	Analyze

23Hours

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO5	-	3	-	-	-	-	-	-	1	1	-	-	1	1

High-3; Medium-2; Low-1

Text Book(s):

T1. Adel S.Sedra, Kenneth C.Smith & Arun N.Chandorkar, "Microelectronic Circuits: Theory and Applications", 7/e, Oxford University Press, New York, 2014. T2. Donald A Neamen, "Microelectronics: Circuit Analysis and Design", Edition 4, 2010.

Reference Book(s):

R1. P.Malvino, D.J.Bates, "Electronic Principles", 7/e, Tata McGraw-Hill, 2017.

R2. R.L.Boylestadad and L.Nashelsky "Electronic Devices and Circuit Theory", 11/e, Pearson Education, 2015.

Web References:

1. https://archive.nptel.ac.in/courses/108/105/108105158/

Course Code: 23EVI301		Course Title: Data Structures and Algorithms using Python					
Course Category: Multi-Dis	ciplinary	Course Level: Intermediate					
L:T:P(Hours/Week) 2:0 : 2	Credits:3	Total Contact Hours:60	Max Marks:100				

The course is intended to teach students to create and implement required linear and nonlinear data structures for given applications. Also, the course is intended to provide ability to apply suitablesearching and sorting techniques to solve a given problem.

Module I

Linear Data structure: Data Structures types - Abstract Data Types - List ADT: Array and Linked List Implementation - Stack ADT: Implementation of Stack – Queue ADT: Implementation of Queue.

Non-Linear Data Structure: Tree - Preliminaries - Binary tree - Tree traversal - Applications - Binary search tree.

Data Structures for Switching Functions: Binary Decision trees - Introduction to Ordered Binary decision trees (OBDD) - Boolean functions - Boolean algebra - Switching functions - Subfunctions and Shannon's expansion - Visual representation.

Module II

Non Linear Data Structure: Graph Representation - Graph Traversals: Depth first and Breadthfirst traversal - Topological sort - Shortest path algorithms: Weighted Graphs - Dijkstra's algorithms - Minimum Spanning Tree: Prim's and Kruskal's algorithms.

Searching: Linear Search – Binary Search. **Sorting:** Bubble sort- Insertion Sort - Merge sort –Quick Sort.

List of experiments

- 1. Implementation of stack and queue
- 2. Implementation of linked list
- 3. Applications of stack
 - a. Infix to post fix conversion
 - b. Evaluation of postfix expression
- 4. Implementation of Binary search tree
- 5. Implementation of searching linear, Binary
- 6. Implementation of sorting technologies, Merge and Quick sort

16 Hours

14 Hours

Course Outcomes At the end of this course, students will be able to:	Cognitive Level
CO 1: Identify the appropriate data structures as per the specified problem definition using Python.	Apply
CO 2: Develop Tree data structure for the given Scenario.	Apply
CO 3: Develop graph data structure for the given application.	Apply
CO 4: Demonstrate searching and sorting techniques for any givenproblem with an oral presentation.	Apply

СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	2	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-	-	-
CO4	-	2	-	-	-	-	-	-	2	2	-	-	-	-

High-3; Medium-2; Low-1

Text Book(s):

T1.Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", Wiley, July 2021.

T2.Christoph Meinel and Thorsten Theobald, "Algorithms and Data Structures in VLSI Design", Springer 1998.

Reference Book(s):

R1. John Canning, Alan Broder, Robert Lafore, "Data Structures & Algorithms in Python", Addison-Wesley Professional, October 2022.

R2. Dr. Basant Agarwal, "Hands-On Data Structures and Algorithms with Python", Packt Publishing, July 2022.

R3. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, PearsonEducation Asia, New Delhi, 2011.

- 1. https://www.udemy.com/course/data-structures-and-algorithms-bootcamp-in-python/
- 2. https://www.udemy.com/course/data-structures-using-python/
- 3. https://onlinecourses.nptel.ac.in/noc24_cs78/

Course Code: 23EVL301		Course Title: Digital IC Laboratory				
Course Category: Major		Course Level: Intermediate				
L:T:P(Hours/Week)0:0:3	Credits:1.5	Total Contact Hours: 45	Max Marks:100			

The course is intended to explain the design principles of combinational and sequential circuits.

List of Experiments:

- 1. Design of full adder / full subtractor using logic gates.
- 2. Design of encoder / decoder using logic gates.
- 3. Design 2:1 multiplexer using universal 7400 IC / 7402 IC.
- 4. Design of basic flip-flops.
- 5. Design 4-bit SISO shift register and implement the same using 7474 IC.
- 6. Design 4-bit SIPO shift register and implement the same using 7476 IC.
- 7. Realize state table, state diagram, circuit diagram of 3-bit synchronous counter, and implement the same using 7474 IC.
- 8. Realize state table, state diagram, circuit diagram of 3-bit synchronous counter, and implement the same using 7476 IC.
- 9. Realize state table, state diagram, circuit diagram of mod-5 counter, and implement thesame using 7474 IC.
- 10. Realize state table, state diagram, circuit diagram of mod-5 counter, and implement thesame using 7476 IC.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1: Design combinational circuits using basic gates	Apply
CO2: Build synchronous sequential circuits using Flip Flops.	Apply
CO3: Design shift registers and counters using Flip Flops.	Apply

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	2	-	-	1	1	1
CO2	3	-	-	-	-	-	-	-	2	-	-	1	1	1
CO3	3	-	-	-	-	-	-	-	2	-	-	1	1	1

High-3; Medium-2;Low-1

Reference Book:

R1.Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering andTechnology

Course Code: 23EVL302		Course Title: Analog Electronics Laboratory					
Course Category: Major		Course Level: Intermediate					
L:T:P(Hours/Week)0:0:3	Credits:1.5	Total Contact Hours:45	Max Marks:100				

The course is intended to impart knowledge on design and analysis of simple circuits with SPICE simulations using BJTs and MOSFETs.

List of Experiments:45 Hours

- 1. Introduction to SPICE simulations and hardware workbench.
- 2. Design and analysis of Single Stage Amplifier for the given specification using BJT.
- 3. Design and analysis of Multistage Amplifier for the given specification using BJT.
- 4. Design and analysis of Class B Amplifier for the given specification using BJT.
- 5. Design and analysis of Class AB Amplifier for the given specification using BJT.
- 6. Design and analysis of MOS Single Stage Amplifier for the given specification.
- 7. Design and analysis of MOS Differential Amplifier for the given specification.
- 8. Design and analysis of Series Shunt Feedback Amplifier for the given specification.
- 9. Design of RC Phase Shift Oscillators for the given specification.
- 10. Design of Colpitts oscillator and Hartley oscillator for the given specification.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	Obginative Level
CO1: Analyze amplifier and oscillator circuits using BJTs for the given specification	Analyze
CO2: Analyze amplifier circuits using MOSFETs for the given specification	Analyze

Course Articulation Matrix

CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	-	-	-	-	-	-	2	-	-	1	1	1
CO2	-	3	-	-	-	-	-	-	2	-	-	1	1	1

High-3; Medium-2;Low-1

Reference Book:

R1.Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering andTechnology

Course Code: 23ESL301		Course Title: Professional Skills 2: Problem solvingskills & Logical Thinking 2 (Common to all B.E/B.Tech Programmes)				
Course Category: SEC		Course Level: Intermediate				
L:T:P(Hours/Week)0: 0: 2	Credits: 1	Total Contact Hours:30	Max Marks:100			

The course is intended to enhance the students' numerical, analytical and logical reasoning ability. Also, course focus to make learners prepare for various public and private sector exams and placement drives.

Module I

20 Hours

Quantitative Ability

Time and work –Pipes and cisterns- - Time Speed Distance-Problems on Trains-Boatsand Streams- Permutation and Combination-Probability, Mensuration- Heights and distance- Logarithms- Clocks and Calendars – Data Sufficiency

Module II

10 Hours

Reasoning Ability

Number & Alpha series- Odd man out-Coding and Decoding-Syllogisms- -Problems onCubes and Dices- Logical Venn diagram -Visual Reasoning-Element & logical series.

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:		
CO1: Enhance their problem solving skills & Logical thinking Skills	Apply	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	3	1	1

High-3; Medium-2; Low-1

Textbook(s):

T1:Dr. R. S. Aggarwal. "Quantitative Aptitude for Competitive Examinations" Sultan Chand & Sons Pvt.

Ltd, New Delhi, 2018.

T2:Dr. R. S. Aggarwal. "A Modern Approach to Logical Reasoning", Sultan Chand & Sons Pvt. Ltd,New Delhi, 2018

Reference Book(s):

- R1: R. V. Praveen. "Quantitative Aptitude and Reasoning" 2nd Revised Edition, Prentice-Hall of IndiaPvt.Ltd, 2013
- R2:Arun Sharma. "Quantitative Aptitude for Common Aptitude Test", McGraw Hill Publications, 5thEdition, 2020
- R3:Arun Sharma. "Logical Reasoning for Common Aptitude Test", McGraw Hill Publications, 6thEdition, 2021.

- 1 https://www.indiabix.com/aptitude/questions-and-answers/
- 2 https://www.geeksforgeeks.org/aptitude-questions-and-answers/

Course Code: 23VAT301	Course Title: Un	iversal Human Values 2: Understanding Harmony					
Course Category: VAC		Course Level: Intermediate					
L:T:P (Hours/Week) 2:1: 0	Credits:3	Total Contact Hours:45	Max Marks:100				

The course is intended to:

- 1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- 2. Strengthening of self-reflection
- 3. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 4. Development of commitment and courage to act
- 5. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.

Unit I Introduction to Value Education

Need for the Value Education; Self -exploration as the process for value education; Continuous Happiness and Prosperity: A look at basic Human Aspirations; Right understanding: Relationship and Physical Facilities; Happiness and Prosperity: current scenario; Method to fulfill the Basic human aspirations

Unit II Harmony in Human Being

Human being as a co-existence of self ('I') and the material 'Body'; needs of Self ('I') and 'Body'; The Body as an instrument of 'I'; Harmony in the self ('I'); Harmony of the self ('I') with body; Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail. Programs to ensure Sanyam and Swasthya.

Unit III Harmony in the Family and Society

Harmony in the Family the basic unit of human interaction; Values in human to human relationship; Trust as the foundational values of relationship; Respect as the right evaluation; Understanding harmony in the society (society being an extension of family); Vision for the universal human order.

Unit IV Harmony in the Nature

Understanding the harmony in the Nature Interconnectedness, self-regulation and mutual fulfillment among the four orders of nature; Existence as Co-existence at all levels; Holistic perception of harmony in existence.

Unit V Harmony on Professional Ethics

Natural acceptance of human values; Definitiveness of Ethical Human Conduct; Basic for Humanistic Education, Humanistic Constitution and Humanistic Universal Order; Competence in professional ethics; Case study: holistic technologies, management models and production systems; Strategy for transition towards value-based life and profession.

9 Hours

9 Hours

9 Hours

9 Hours

Course Outcomes	
At the end of this course, students will be able to:	Cognitive Level
CO1: Reflect on values, aspiration, relationships and hence identify strengths and weaknesses.	Responding
CO2: Appraise physical, mental and social wellbeing of self and practice techniques to promote wellbeing.	Responding
CO3: Value human relationships in family and society and maintain harmonious relationships.	Valuing
CO4: Respect nature and its existence for survival and sustainable of all life forms and hencepractice conservation of nature	Valuing
CO5: Appreciate ethical behavior as a result of value system in personal and professional situations	Receiving

CO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	1	2	2	-	-	2	-	-
CO2	-	-	-	-	-	1	2	2	2	1	-	2	-	-
CO3	-	-	-	-	-	2	2	2	2	1	-	2	-	-
CO4	-	-	-	-	-	2	2	2	2	-	-	2	-	-
CO5	-	-	-	-	-	1	2	2	2	-	-	2	-	-

High-3; Medium-2;Low-1

Text Book(s):

T1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, NewDelhi, 2010.

Reference Book(s):

R1. Jeevan Vidya: E k Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

R2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

R3. The story of stuff, Annie Leonard, Free Press, New York 2010.

- 1. https://aktu.ac.in/hvpe/ResourceVideo.aspx
- 2. http://hvpenotes.blogspot.com/
- 3. https://nptel.ac.in/courses/109/104/109104068/

SEMESTER IV

Course Code: 23MAI401		Со	Course Title: Probability Theory and Statistics				
Course Category: Minor			Course Level: Intermediate				
L:T:P(Hours/Week)3:0 :2	Credits:	4	Total Contact Hours:75	Max Marks:100			

This course aims at providing the student to acquire the knowledge on random variables and probability distributions. They gain knowledge regarding hypothesis testing for data.

Module I

Probability and Random Variables: Axioms of Probability- Conditional Probability- Total Probability -Baye's Theorem- Random Variables- Probability Mass Function- Probability Density Functions-Properties - Moments- Moment generating functions and their properties. **Standard Distributions:** Discrete Distributions - Binomial- Poisson- Properties, Moment generating functions. Continuous Distributions - Uniform –Exponential- Normal Distributions and their properties. **Two Dimensional Random Variables**: Joint distributions – Marginal and conditional distributions –Covariance – Correlation and linear regression using least square method – Transformation of random variables.

Module II

Test of Hypotheses: Sampling distributions, Estimation of parameters, Statistical hypothesis, Large sample test based on Normal distribution for single mean and difference of means, Tests based on t, Chi-square and F distributions for mean, variance and proportion, Contingency table (test for independent), Goodness of fit. **Design of Experiments:** Analysis of Variance (ANOVA)-One Way Classification– Completely Randomized Design(CRD) – Two-way Classification – Randomized Block Design (RBD) –Latin square.

List of Experiments:

- 1. R programing for basic arithmetic operators.
- 2. Probability distributions (Discrete & Continuous) using R Programming.
- 3. Calculate correlation coefficient using R Programming.
- 4. Small sample test using R Programming.
- 5. Large sample test using R Programming.
- 6. One way, two-way Classification using R Programming.

22 Hours

30 Hours

Course Outcomes			
At the end of this course, students will be able to:			
CO1: Apply standard distributions and the concepts of random variables, to solve real-world problems.	Apply		
CO2: Use the concept of probability distributions to solve real life problems.	Apply		
CO3: Using correlation coefficient and discusses the relationship between two variables.	Apply		
CO4: Apply variance to analyze the samples.	Apply		
CO5: Demonstrate the concepts of standard distributions and testing of hypothesis using modern tools (For Laboratory component only)	Apply		

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO5	3	-	-	-	1	-	-	-	1	1	-	1	1	1

High-3; Medium-2; Low-1

Text Book(s):

T1. Veerajan T, "Probability, Statistics and Random process", 3rd Edition, Tata McGraw-Hill, NewDelhi, 2017.

T2. Dr.J.Ravichandran, "Probability and Statistics for Engineers", 1stEdition, Wiley India Pvt. Ltd.,2010.

Reference Book(s):

R1. R.E. Walpole, R.H. Myers, S.L. Myers, and K Ye, "Probability and Statistics for Engineers andScientists", 9th Edition Pearson Education, Asia, 2013.

R2. M.R. Spiegel, J. Schiller and R.A. Srinivasan, "Schaum's Outlines Probability and Statistics", 4th Edition Tata McGraw Hill edition, 2012.

R3. Morris DeGroot, Mark Schervish, "Probability and Statistics", Pearson Educational Ltd,

Web References:

1 https://archive.nptel.ac.in/courses/111/105/111105090/

2. https://archive.nptel.ac.in/courses/111/105/111105041/

Course Code: 23EVT401		Course Title: Linear Integrated Circuits				
Course Category: Major		Course Level: Intermediate				
L:T:P(Hours/Week)3:0:0	Credits:3	Total Contact Hours:45	Max Marks:100			

The course is intended to impart knowledge on OPAMP internal structure, frequency characteristics and utilize the same to develop application circuits. Also the course imparts a depth knowledge on PLL and Timer circuit design.

Module I

Operational amplifier: Internal Structure, Characteristics of ideal OPAMP, IC 741 packages, open- loop configurations, non-ideal effects in op-amp, Frequency response of an op-amp. OPAMP with negative feedback: Voltage Series, Voltage Shunt feedback configurations. **Applications of OPAMP:** Linear OPAMP Applications - Summing amplifier, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier, voltage-to-current converter, current-to- voltage converter – OPAMP applications using Diodes: Logarithmic amplifiers, Rectifiers, Peak detectors, and as Voltage regulators.

Module II

Comparators and Waveform Generators: Comparator and its applications, Schmitt trigger, Free- running, One-shot Multivibrators, Barkhausen Criterion; Waveform generators- Sine, Square, Triangular, and Saw-tooth. **Active filters**: Classification of filters, frequency and impedance scaling, First and second order Low-pass and High pass filters, Band-pass filter, Notch filter. **PLL and Timers:** PLL-Phase detector, comparator, VCO, Applications of PLL; 555 timer IC- Astable and Monostable operations and applications.

Course Outcomes	Cognitive Lovel				
At the end of this course, students will be able to:	Cognitive Level				
CO 1: Make use of the internal structure, characteristics, and frequency					
response of operational amplifiers to evaluate their suitability for various	Apply				
applications.					
CO 2: Identify the feedback configurations in operational amplifier develop	Apply				
application circuits.	Арріу				
CO 3: Utilize OPAMPs to develop comparators, and waveform generators.	Apply				
CO 4: Apply active filters, PLLs, and timers to design and implement circuits	Apply				
for signal processing and control applications.	Арріу				
CO 5: Select suitable amplifiers and oscillators based on the application, and	Apply				
present a report or seminar (only for Assignment)	дариу				

22 Hours

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO4	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO5	3	-	-	-	1	-	-	-	1	1	-	1	1	1

High-3; Medium-2;Low-1

Text Book(s):

T1. J.D.Roy Choudhury, "Linear integrated Circuits", 2017,5th Edition, New-Age International Publishers, Chennai.

T2. K. R. Botkar, "Integrated Circuits" 10th Edition, Kp, 2010.

Reference Book(s):

R1. Ramakant A.Gayakwad, "Op-Amps and Linear Integrated Circuits", 2015, 4th Edition, Pearson Education, Bangalore.

R2. Robert F.Coughlin and Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits",2015, 6th Edition, Pearson Education, Bangalore.

- 1. https://onlinecourses.nptel.ac.in/noc24_ee73/preview
- 2. https://archive.nptel.ac.in/courses/108/108/108108111/

Course Code: 23EVT402	Course	se Title: Signals and Systems					
Course Category: Major		Course Level: Intermediate					
L:T:P(Hours/Week) 3:1:0	Credits:4	Total Contact Hours: 60	Max Marks:100				

The course is intended to classify various continuous-time, discrete-time signals and systems. Also, the course imparts the spectral characteristics of continuous-time signals and systems using Fourier and Laplace transforms, and discrete time signals and systems using Z transform.

Module I

23 + 5 Hours

Classification of Signals: Continuous Time (CT) and Discrete Time (DT) signals - Deterministic and Random signals, Periodic and Aperiodic signals - Even and Odd signals - Energy and Power Signals -Unit step, Ramp, and Impulse signals - Operation on signals: Time shifting, scaling and folding. **Sampling and Reconstruction:** Sampling of continuous time signals - Frequency domain representation of samples - Sampling theorem - Effects of under sampling - Aliasing - Reconstruction of continuous time signals from samples. **Classification of Systems:** Continuous time systems - Discrete time systems - Linear system - Time invariant system - causal system - BIBO stable system - system with and without memory – LTI system.

Module II

Analysis of Continuous Time Signals and Systems: Fourier series for periodic signals -Fourier Transform – properties- Laplace Transforms and Properties - Impulse response -Convolution integrals - Differential Equation- Fourier and Laplace transforms in analysis of CT systems - Systems connected in series / parallel. **Analysis of Discrete Time Signals and Systems:** Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT) -Properties of DTFT - Z Transform & Properties - Impulse response– Difference Equations -Convolution sum- Discrete Fourier Transform and Z Transform analysis of Recursive & Non -Recursive systems-DT systems connected in series and parallel.

Course Outcomes		
At the end of this course, students will be able to:	Cognitive Level	
CO1: Apply mathematical operations to classify signals based on their properties.	Apply	
CO2: Apply the concept of Sampling and Reconstruction on continuous Time signals	Apply	
CO3: Apply mathematical operations to classify systems based on their properties.	Apply	
CO4: Analyze continuous-time signals and systems using Fourier Series, Fourier Transform, and Laplace Transform.	Analyze	
CO 5: Analyze discrete-time signals and systems using DTFT and Z – Transform.	Analyze	
CO 6: Identify the characteristics of EEG signals and arrive at suitable specifications to design an EEG amplifier also give suitable ESD values for human body model. (only for Assignment)	Apply	

22+ 10 Hours

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO5	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO6	-	-	3	-	2	-	-	2	1	1	1	2	1	2

High-3; Medium-2;Low-1

Text Book(s):

T1. Allan V. Oppenheim, S. Wilsky and S.H.Nawab "Signals and System", Pearson education, 2007.

T2. Simon Haykins and Barry Van Veen, "Signals and Systems", John Wiley & Sons, 2004.

Reference Book(s):

R1. HPHsu,Rakesh Ranjan,"Signals and Systems",Schaum's Outlines,Tata McGraw Hill,IndianReprint, 2007.

R2. Edward W Kamen, Bonnie S Heck, "Fundamentals of Signals and Systems Using the Weband MATLAB", Pearson Education, 2007.

R3. Vinay K Ingle, John G Proakis, "Digital Signal Processing using MATLAB", Cengage Learning, 3rd edition, 2011.

Web References:

1. https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011

2.http://www.ws.binghamton.edu/fowler/Fowler%20Personal%20Page/EECE301%20-%20Flipped.htm

3. https://nptel.ac.in/courses/117/104/117104074/

Course Code: 23EVI401	Cou	Course Title: Fundamentals of VLSI					
Course Category: Major		Course Level: Intermedi	ate				
L:T:P(Hours/Week) 3:0:2	Credits:4	Total Contact Hours: 75	Max Marks:100				

The course is intended to explain the design of various blocks of digital and analog systems and verify their functionality at pre-layout and at Layout level. Additionally, the course discusses the technologies involved in chip fabrication and packaging.

Module I

System and Architectural Design: Defining a system specification, performance analysis, cost analysis, identifying various functional blocks/modules; categorizing them in terms of digital, analog, RF and mixed signal blocks. **Functional verification, logic design:** Verifying the functionality of blocks, behavioural description, logic minimization, synthesis, verification and testing; PVT simulations.

Module II

Circuit Optimization and Physical Design: Optimization of synthesized blocks for various performance metric, Introduction to placement and routing, Layout vs Schematic (LVS) verification, Design for Manufacturability. **Tape Out:** Post layout simulations, Process Voltage Testing, Process Design Kit, Design Rule Check, GDSII. **Fabrication and Packaging:** CMOS process flow, dicing, various types of packaging. **Process followed in industry:** Roles and objectives of various streams within Semiconductor industry, Industry Terminologies.

List of Experiments

- 1. Arrive at the system specifications for a given real-time case.
- 2. For a given problem statement, arrive at the reduced logic circuit. Verify the functionality using SPICE simulations at different PVT corners.
- 3. Design a CMOS inverter and verify its DC characteristics through SPICE simulations. Estimate power dissipation, area, and processing delay. Understand rise and fall times through simulations.
- 4. Realize NAND and NOR gates in CMOS logic. Verify truth tables through SPICE simulations.
- 5. Design the physical layout of a CMOS inverter. Perform DRC clean and LVS.
- 6. Perform post-layout simulations of the CMOS inverter. Comparative study of layout and schematic parameters.

30 Hours

22 Hours

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:		
CO 1: Design the simple digital and analog systems for the given specification	Apply	
CO 2: Utilize circuit optimization in physical design of simple digital and analog systems	Apply	
CO 3: Identify the technologies involved in chip fabrication, packaging and process integration in semiconductor industry	Apply	
CO 4: Examine and report the analog and digital IC design process using SPICE simulations. (Lab Component only)	Analyze	

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	1	-	-	2	1	1	2	1	1	1

High-3; Medium-2; Low-1

Text Book(s):

T1.Sneh Saurabh, "Introduction to VLSI Design flow", Cambridge University Press.

Reference Book(s):

R1.M.Morris Mano and Michel.D.Ciletti, "Digital Design with an introduction to HDL,VHDL and Verilog", 6th edition Pearson education.

Web References:

1. https://nptel.ac.in/courses/117106092

Course Code: 23EVT403	С	Course Title: Microprocessors and Microcontrollers				
Course Category: Major		Course Level: Intermediate				
L:T:P(Hours/Week)3:0:0	Credits: 3	Total Contact Hours: 45	Max Marks:100			

The course is intended to impart knowledge on microprocessor and microcontroller architecture, develop programs for on-chip peripherals, and design systems using interfacing.

Module I

Microprocessor and Microcontroller Architecture: Introduction to Microprocessor and Microcontroller– Evolution – Von Neumann and Harvard architecture - Architecture of 8085 & 8051 - CISC Vs RISC. **PIC Microcontroller and Progamming:** PIC18FX Pin connection - File register - Data type and Time delay in C - Logical operation –Data conversion - Data sterilization - Program ROM Allocation - Data RAM allocation. **On-Chip Peripherals of PIC Microcontroller:** I/O Ports-Timer0/counter – UART - Interrupts - ADC - DAC - SPI - I2C.

Module II

Architecture of ARM: ARM7 processor fundamentals – Registers - Pipelining – Exception and Interrupt handling - Memory System - **on-chip peripherals of LPC2148**: GPIO, Timers, PWM, Serial ports–RTC-ADC- Introduction to ARM cortex Mx - Processors core overview - Programmers model. **System Design and Application:** LED and Switch interfacing-LCD Interfacing – Keyboard Interfacing- Relay interfacing – Sensor Interfacing - Stepper Motor Interfacing - PWM Module – DC Motor Interfacing.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Apply microprocessor and microcontroller architecture principles to design systems.	Apply
CO2: Develop application programs to design PIC18FX microcontroller based systems using on-chip peripherals.	Apply
CO3: Design systems and develop a program for on-chip peripherals in ARM7 and LPC2148.	Apply
CO4: Develop application systems using ARM7 and LPC2148 using interfaces.	Apply
CO5: Design and develop a program for real world application systems using microprocessor and microcontroller (only for Assignment)	Apply

22 Hours

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	-	3	-	-	-	-	-	-	-	-	-	1	1
CO4	-	-	3	-	1	-	1	-	1	1	-	1	-	-

High-3; Medium-2;Low-1

Text Book(s):

T1. R.S.Gaonkar,"Microprocessor Architecture, Programming and Applications with the 8085", 5th Edition, Prentice Hall, 2002.

T2. Muhammad ALI Mazidi, RolinD.Mckinlay, Danny Causery,"PIC Microcontroller and Embedded systems using assembly and C PIC18", Pearson international edition, 2008.

Reference Book(s):

R1. A.K Ray , K.M.Bhurchandi ,"Advanced Microprocessors and Peripherals" 3rd Edition McGraw Hill Education 2012

R2. Steve Furber, "ARM System-on-Chip Architecture" Pearson Education Limited, 2012

R3. Krishna Kant, "Microprocessor and Microcontroller Architecture, Programming and System Design using 8085, 8086, 8051 and 8096", PHI, 2011.

Web References:

1.https://www.nxp.com/docs/en/user-guide/UM10139.pdf

2.http://www.microchip.com/design-centers/microcontrollers

3.https://electrosome.com/category/tutorials/pic-microcontroller/hi-tech-c/

4.https://ww1.microchip.com/downloads/en/devicedoc/39582b.pdf

Course Code: 23EVL401	Course Title: Microprocessors and Microcontrollers Laboratory							
Course Category: Major			Course Level: Intermediate					
L:T:P(Hours/Week) 0: 0: 3		Credits: 1.5	Total Contact Hours: 45	Max Marks:100				

The course is intended to impart knowledge on developing programs to perform arithmetic operations with 8085 Microprocessor, application development with interfacing techniques in PIC16Fxx/LPC2148.

45 Hours

List of Experiments

8085 Microprocssor 1. Arithmetic Operation-Addition & Subtraction

PIC16FXX/18FXX Microcontroller

- 2. LED and switch interfacing
- 3. Lamp control using Timer/Counter
- 4. Transmission and Reception of a byte using on chip serial port
- 5. Read the temperature sensor value using ADC and display it in LCD

LPC2148 Microcontroller

- 6. Program to read switch status and displayed in LEDs.
- 7. Waveform generation using 10 Bit DAC
- 8. Controlling PWM period with analogue input (POT)
- 9. Transmission from kit and reception from PC using Serial Port (UART)
- 10. IoT based Temperature/Moisture monitoring system.

Course Outcomes	Cognitivo Loval
At the end of this course, students will be able to:	Cognitive Level
CO1: Develop assembly language program to perform addition and	Apply
subtraction using the 8085 microprocessors.	Лрргу
CO2: Experiment with PIC16FXX/18FXX Microcontroller and its	Apply
interfacing techniques.	Дрру
CO3: Experiment with LPC2148 Microcontroller and its	Apply
interfacing techniques.	Арріу

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	1	1	-	1	1	1
CO2	3	-	-	-	1	-	-	-	1	1	-	1	1	1
CO3	3	-	-	I	1	-	-	I	1	1	-	1	1	1

High-3; Medium-2;Low-1

Reference Book:

R1. Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering and Technology

Course Code: 23EVL402	Course T	e Title: Linear Integrated Circuits Laboratory					
Course Category: Major		Course Level: Intermediat	e				
L:T:P(Hours/Week)0:0 :4	Credits:2	Total Contact Hours:60	Max Marks:100				

The course is intended to incorporate knowledge on design and analysis of simple linear integrated circuits using OP-AMP ICs.

List of Experiments:

60 Hours

- 1. Design of Inverting, Non-Inverting amplifiers, and Voltage follower.
- 2. Perform mathematical operations using operational amplifier.
- 3. Design of Instrumentation amplifier.
- 4. Design and testing of Precision Rectifier.
- 5. Design of Comparator and Schmitt trigger circuits.
- 6. Design of Square wave generator for a specified frequency and duty cycle, using operational amplifier IC741.
- 7. Design of Triangular wave generator from Square wave generator.
- 8. Design of a Sinusoidal oscillator for specified frequency Wien-bridge and RC phase shift oscillators using IC741.
- 9. Design of Audio Q Multiplier using IC741.
- 10. Design and testing of Active filters LPF and HPF for specified frequency.
- 11. Design of Astable and Monostable Multivibrators using IC555.
- 12. Design of A/D and D/A converters.

Course Outcomes		
At the end of this course, students will be able to:	Cognitive Level	
CO1: Design simple analog circuits to perform mathematical operations, rectification and analog comparison.	Apply	
CO 2: Design waveform generators, multivibrators, A/D and D/A converters.	Apply	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	1	1	-	1	1	1
CO2	3	-	-	-	1	-	-	-	1	1	-	1	1	1

High-3; Medium-2;Low-1

Reference Book:

R1.Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering and Technology.

Course Code: 23ESL401	Cour Deve B.E/I	Course Title Professional Skills 3 : Professional Development and Etiquette (Common to all B.E/B.Tech Programmes)						
Course Category: SEC		Course Level: Intermediate						
L:T:P(Hours/Week)0: 0: 2	Credits: 1	Total Contact Hours:30	Max Marks:100					

The course is intended to cultivate students' appropriate etiquette across various personal and professional contexts, fostering professionalism and effective communication.

Module I

15 Hours

Emotional Intelligence

Intrapersonal Skill: Goal Setting- Self-management- Emotional Intelligence: Understanding & Developing EI for Effective Communication and Relationships –Enhancing Social Skills

Professional Development

Introduction to Professional Development - Career State Assessment - Set Career Goals-Stay on Industry Trends - Self & Lifelong learning – Creativity - Problem Solving Skills -Strong Fundamentals – Using/ Creating Opportunities – Work & Life Balancing - Revisiting Goals

Teamness and Interpersonal skills

Paraphrasing: Techniques for Active Listening -Paraphrasing as a Tool for Effective Understanding and Communication – Collaboration and Team Building: Building Trust and Rapport - Self-paced learning.

Module II Effective Communication

Effective Verbal Communication - Assertive Communication - Elements of Effective Communication - Barriers to Effective Communication - Persuasion Skills - Effective Presentation: Oral and visual presentation – Drafting formal reports.

Professional Etiquette

Introduction - Types of professional Etiquette- Personal Grooming: Importance of Personal Grooming in Professional Settings- Dress Codes and Professional Appearance Guidelines- Body language - Social – Email – Telephonic – Dining – Classroom -

Activities:

- Emotional Intelligence: Scenario based role play, Debate
- Paraphrasing: Listening, Reading
- Effective Presentation:
 - o Oral Presentation: Self-Introduction, JAM, Extempore speech
 - Visual presentation: Email Writing, Power Point Presentation, Vlog
- Professional Etiquette: Demonstrate required Professional Etiquette in all the above activities.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1: Communicate effectively and exhibit Professional etiquettes in various social forums.	Apply

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	I	-	-	I	2	2	3	-	1	1	1

High-3; Medium-2; Low-1

Textbook(s):

- **T1**. Sabina Pillai, Agna Fernandez, "Soft Skills & Employability Skills", Cambridge University Press2018
- **T2.** Peggy Post &Peter Post, "The Etiquette Advantage in Business: Personal Skills for Professional Success", 2nd edition (May 3, 2005), William Morrow.

Reference Book(s):

R1. Ashraf Rizvi, "Effective Technical Communication" 2nd Edition, McGraw-Hill India, 2018

R2. Maithry Shinde, Jyotsna Sreenath, "Life Skills & Personality Development", Cambridge University Press 2022

- 1. https://www.indeed.com/career-advice/career-development/etiquette-at-work
- 2. https://www.skillsyouneed.com/interpersonal-skills.html

SEMESTER V

Course Code: 23EVT501	Course ⁻	Title: FPGA Based System Design				
Course Category: Major		Course Level: Higher				
L:T:P(Hours/Week) 3:0:0	Credits:3	Total Contact Hours:45	Max Marks:100			

The course is intended to impart knowledge on FPGA Architecture, develop logic circuits, use HDL models and implement complex digital sub-systems on FPGA.

Module I

Overview of FPGA Architectures and Technologies: FPGA Architectural options, granularity of function and wiring resources, coarse vs. fine-grained architectures. ASIC vs FPGA, Examples of usecases where ASIC is used and where FPGA is used –Introduction to pi layer protocols. Logic and I/O Blocks: Logic cells, timing models, power dissipation. I/O blocks - Input and output cell characteristics, clock input, timing, and power dissipation. **Programming Technologies**-Chip I/O- Programmable Logic Blocks- Fabric and Architecture of FPGA. **HDL Fundamentals and Arithmetic circuit design:** Verilog Behavioral, Data Flow and Structural Modeling, Useful Modeling Techniques. **Arithmetic Circuits:** Ripple carry adder, Carry look-ahead adder, Carry select adder, Parallel Multipliers.

Module II

FSM and memory modelling: Synchronous and Asynchronous FIFO – Single port and Dual port ROM and RAM - FSM Verilog modeling of Sequence detector - Serial adder - Vending machine. **Synthesis and Timing Analysis:** Synthesis, Optimization of Speed: Introduction, Strategies for Timing Improvement; Optimization of Area, Optimization of power. **FPGA Applications:** Embedded system design using FPGAs, DSP using FPGAs, application case studies.

Course Outcomes	Cognitive Level			
At the end of this course, students will be able to:				
CO 1: Compare the suitability of FPGA and ASIC architectures for	Apply			
different applications.	11 5			
CO 2: Design HDL models for arithmetic circuits and perform FPGA	Apply			
implementation.	лрру			
CO 3: Design and analyze FSM models for logic circuits and memories	Apply			
using Verilog HDL.	друу			
CO 4: Implement Embedded and DSP applications on FPGA.	Apply			

23 Hours

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book(s):

T1. Michael D Ciletti, Advanced Digital Design with the Verilog HDL, Prentice Hall, Second Edition, 2017.

Reference Book(s):

R1. Charles H Roth Jr, Lizy Kurian John and Byeong Kil Lee Digital Systems Design using Verilog, Cengage Learning, First Edition, 2016.

R2. Wayne Wolf, FPGA Based System Design, Prentices Hall Modern Semiconductor Design Series, 2011.

R3. Ming-Bo Lin, Digital Systems Design and Practice: Using Verilog HDL and FPGAs, Create Space Independent Publishing Platform, Second Edition, 2015.

- 1. https://www.eeweb.com/beginners-guide-to-understanding-fpga-development/
- 2. https://learn.sparkfun.com/tutorials/programming-an-fpga/all

Course Code: 23EVT502		Cours	e Title: Control Systems				
Course Category: Major			Course Level: Higher				
L:T:P(Hours/Week) 3:1:0	Credi	ts:3	Total Contact Hours: 45	Max Marks: 100			

This course introduces students to the fundamentals of Control Systems, covering openloop and closed-loop systems, feedback, and system modeling techniques. Students will learn time and frequency domain analysis, and performance evaluation using Bode and Nyquist plots. The course also emphasizes state-space representation, stability analysis through eigenvalues, and concepts of controllability and observability.

Module I

Control Systems and Mathematical modeling of systems: Basic components of a control system, Open-loop control system and closed loop control system – Transfer function, Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems – Transfer function - Mathematical modelling of electrical and mechanical systems, Block diagram reduction technique - Signal flow graph. Time Domain Response and Characterization of Systems: Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.

Module II

22 Hours

Frequency Domain Response and State Space Analysis: Frequency response – Performance specifications in the frequency domain, Phase margin and gain margin, Bode plot, Polar plot and Nyquist plot, Stability analysis in frequency domain. **Dynamic system modeling in state space representation:** Diagonal canonical form, Jordan canonical form, Solutions of state equations of LTI system, Conversion from state space model to transfer function model and vice versa, Stability analysis in state spaces: Concept of eigenvalues and eigenvectors, State transition matrix using Cayley-Hamilton theorem, Controllability and observability.

Course Outcomes	Cognitive	
At the end of this course, students will be able to:	Level	
CO 1: Apply the basic concepts of control system to model systems and		
simplify representations using transfer functions, block diagrams, and signal	Apply	
flow graphs.		
CO 2: Analyze the time-domain response, stability, and error characteristics		
of control systems using test inputs, root locus, and Routh-Hurwitz criteria.	Analyze	
CO 3: Apply frequency response to determine performance specifications,	Apply	
construct plots, and analyze system stability.	Арріу	
CO 4: Analyze dynamic systems using state space representations,		
evaluate stability through eigenvalues and state transition matrices, and	Analyze	
assess controllability and observability.		

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book(s):

T1. Norman S. Nise, Control Systems Engineering, 2019, 8th Edition, John Wiley & Sons, New Jersey, USA.

T2. S.Palani,"Control Systems Engineering", TMH, New Delhi, 2nd Edition, 2020.

Reference Book(s):

R1. Farid Golnaraghi and Benjamin C. Kuo, Automatic Control Systems, 2017, 10th Edition, McGraw-Hill Education, India.

R2. I.J. Nagarth and M. Gopal, Control Systems Engineering, 2018, 6th Edition, New Age International Pvt. Ltd., New Delhi, India.

R3 Gene Franklin, J. Powell and Abbas Emami-Naeini, Feedback Control of Dynamic Systems, 2019, 8th Edition, Pearson Education, New Delhi, India.

Web References:

1. https://WWW.electrical 4u.com/mathematical-modelling -of-various-system/

2. https://nptel.ac.in/courses/108/106/108106098/

3.https://ocw.mit.edu/courses/mechanical-engineering/2-04a-systems-and-controls-spring-

Course Code: 23EVT503		Cours	e Title: Digital Signal Processing					
Course Category: Major			Course Level: Higher					
L:T:P(Hours/Week) 3:0:0	Cred	lits:3	Total Contact Hours: 45	Max Marks: 100				

Prerequisites: i) Complex variables and Transforms

ii) Signals and Systems

Course Objectives:

This course introduces students to key concepts in digital signal processing, including DFT, FFT, and filter design for both IIR and FIR systems. Students will learn analog and digital transformations, multi-rate processing techniques like DCT and Wavelet Transform to realise filter structures, equipping them with essential skills for practical applications.

Module I

23 Hours

Discrete Fourier Transform, Properties and its applications: DFT – Properties -Linear filtering methods - Frequency analysis of signals using DFT – FFT Algorithm -Radix-2 FFT - Sparse FFT - Practical applications. **Design of Analog Filters:** Design techniques for analog filter - Butterworth and Chebyshev approximations – Frequency transformation, Properties - Constant group delay and zero phase filters. **Design of FIR filters:** FIR Filter Design: Design characteristics of FIR filters with linear-phase – Frequency response of linear phase FIR filters – Design of FIR filters using windowing techniques: Rectangular, Bartlett Hamming, Hanning, Blackmann, Kaiser - Phase delay, Group delay. **Digital transformation of IIR filters:** IIR filter design: Bilinear transformation, Impulse Invariance - Spectral transformation of Digital filters.

Module II

22 Hours

Realization structures for Discrete-Time Systems: Direct, Cascade, Parallel, Lattice and Lattice - Ladder Structures: All pass filter - IIR tapped cascaded structure. Parallel all pass realization of IIR systems. **Multirate digital signal processing:** Introduction-Implementation of Sampling Rate Conversion: Polyphase Filter Structures - Interchange of Filters and Downsamplers / Upsamplers - Polyphase Structures for Decimation and Interpolation Filters - Structures for Rational Sampling Rate Conversion. Discrete Cosine Transform - Wavelet Transform.

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:		
CO 1: Apply DFT, FFT algorithms, and analog filter design techniques	Apply	
to analyze signals and design Butterworth and Chebyshev filters.		
CO 2: Analyze FIR and IIR filter characteristics, frequency response,		
phase/group delays, and evaluate design methods for digital filter	Analyze	
transformations.		
CO 3: Apply realization techniques to implement discrete-time systems	Δροίν	
using direct, cascade, parallel, and lattice structures.	трріу	

CO 4: Apply multirate signal processing techniques like polyphase and											
interpolation structures, DCT and wavelet transform to realize filter	A										
architecture.											

Apply

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book(s):

T1. John G. Proakis, Dimitris G Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 2022, 5th Edition, Pearson, USA.

T2. S.K.Mitra, Digital Signal Processing, 2013, 4th edition, TMH, New Delhi, India.

Reference Book(s):

R1. A textbook of Digital Signal Processing, R.S.Kaler, M.Kulkarni, Umesh Gupta, 1st edition, 2019, Dream tech Press, Wiley, India.

R2. James McClellan, Ronal Schaeffer, Mark Yoder, Digital Signal Processing first, 2016, 2nd edition, Pearson, USA.

R3. Lizhe Tan, Jean Jiang, Digital Signal Processing: Fundamentals and applications, 3rd edition. 2018. Academic Press. USA.

- 1. https://nptel.ac.in/courses/117102060
- 2. https://nptel.ac.in/courses/108/105/108105055/
- 3. https://ep.jhu.edu/courses/525627-digital-signal-processing/

Course Code: 23EVL501	Course	Title: FPGA Based System Design Laboratory						
Course Category: Major		Course Level: Higher						
L:T:P(Hours/Week) 0: 0: 3	Credits: 1.5	Total Contact Hours: 45	Max Marks:100					

The course is intended to impart knowledge on design of combinational, sequential circuits, logic controllers for real time systems, and implement the same on FPGA.

List of Experiments

- 45 Hours
- 1. Design and Simulation of Adders (Half adder, Full adder, 4-bit/8-bit Ripple carry adder).
- 2. Design and Simulation of Flip-Flops. (S-R Flip-Flops, JK Flip-Flops, D Flip-Flops, T Flip-Flops).
- 3. Design & Verification of 4 bit Adder using System Verilog.
- 4. FPGA Implementation of Encoder/Decoder
- 5. FPGA Implementation of Multiplexer/De-Multiplexer
- 6. FPGA Implementation of 4-bit Synchronous Counter.
- 7. FPGA Implementation of 32-bit adder using Chipscope.
- 8. FPGA Implementation of 16:1 Multiplexer / 1:16 De-Multiplexer using Chipscope. Finite State Machine (FSM) based experiments
- 9. Design Traffic Light Controller / Vending Machine Controller and perform FPGA implementation.
- 10. Design Elevator Controller / Sequence Detector and perform FPGA implementation.

Course Outcomes	Cognitivo Loval		
At the end of this course, students will be able to:			
CO1: Design adders, flip-flops, and digital circuits using System Verilog and implement on FPGA.	Apply		
CO2: Design digital controllers for real-time systems and implement on FPGA	Apply		

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	1	1	-	1	1	1
CO2	3	-	-	-	1	-	-	-	1	1	-	1	1	1

High = 3, Medium = 2, Low = 1

Reference Book:

R1. Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering and Technology

Course Code: 23EVL502	Course	Title: Digital Signal Processing Laboratory					
Course Category: Major		Course Level: Higher					
L:T:P(Hours/Week) 0:0 :3	Credits: 1.5	Total Contact Hours: 45	Max Marks: 100				

This course equips students with practical skills in digital signal processing (DSP), covering DFT, IDFT, and FFT algorithms, signal sampling and reconstruction, DTFT and real time signal analysis. Also It equips with FIR and IIR filter designs, decimation and interpolation processes.

List of Experiments

45 Hours

- 1. Write a program to find DFT/IDFT of given DT signal.
- 2. Write a program to perform Sampling and Reconstruction of CT signals, DTFT analysis.
- 3. Write a program to perform FFT on a sequence using the decimation in time method.
- 4. Write a program to perform FFT on a sequence using the decimation in frequency method.
- 5. Write a program to perform Biomedical / Speech / Audio Signal Analysis.
- 6. Write a program to design an FIR filter using windowing technique.
- 7. Write a program to design an IIR filter using Butterworth / Chebyshev approximation.
- 8. Write a program to design an IIR filter using bilinear transformation/impulse invariant method.
- 9. Write a program to implement the Decimation Process.
- 10. Write a program to implement the Interpolation Process.

Course Outcomes At the end of this course, students will be able to:	Cognitive Level
CO 1: Build programs to compute transforms, perform signal processing, and analyze various real time signals.	Apply
CO 2: Build programs to design FIR & IIR filters, and implement decimation, interpolation processes.	Apply

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	1	1	-	1	1	1
CO2	3	-	-	-	1	-	-	-	1	1	-	1	1	1

High = 3, Medium = 2, Low = 1

Reference Book:

R1. Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering andTechnology

Course Code: 23ESL501		Course Title: Professional Skills 4: Communication Skills and Interview Essentials (Common to all B.E/B.Tech Programmes)	
Course Category: SEC		Course Level: Higher	
L:T:P(Hours/Week) 0: 0: 2	Credits: 1	Total Contact Hours:30	Max Marks:100

The course is intended to equip students with the necessary skills to effectively communicate in various professional settings and excel in the interview process Module I 15 Hours

Resume Building & Portfolio Management

Importance of a Strong Resume - Resume Content Development & Core Components – Formatting and Design - Tailoring and Customization – Proofreading - Portfolio Content, design and Structure: Components & Efficient portfolios – Preparing and Maintaining documents for interview – maintaining repositories - Enhancing Personal Brand - Digital Tools and Platforms

Interview - Dress code, Body Language and Grooming

Dress Code Essentials - Body Language – Facial expression, eye contact, gesture, posture, touch behavior & space- Personal Grooming

Effective Communication

Communication in Diverse Contexts - Presentations – Individual and group presentations - Public Speaking - Visual Aids and Presentation Tools

Module II

15 Hours

Group Discussion

Introduction & types of Group Discussion – Prerequisites of GD – Techniques and tips of GD - Role of GDs in various professional contexts – GD Etiquettes – Strategies to enhance GD – Mock GD.

Interview Skills

Purpose of an interview - Types of Interviews –Interview Techniques – Interview Etiquette - Planning and Preparation - Mock Interviews with Feedback - Post-Interview Etiquette and Follow-Up

Activities:

Building Portfolio: Resume Building, Updating LinkedIn, Maintaining Repositories. Effective Presentation:

Oral Presentation: Impromptu speech, Mini Presentation, Picture Perception (Both Speaking and Writing)

Visual presentation: Power Point Presentation, Vlog

Group Discussion: General, Technical

Mock Interview: General, Technical
Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	J
CO1: Communicate effectively and exhibit required competency in various	
professional environments and demonstrate proficiency in interview	Apply
process.	

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	I	-	-	-	-	-	-	1	3	3	-	1	-	-

High-3; Medium-2; Low-1

Textbook(s):

T1. Ashraf Rizvi, "Effective Technical Communication" 2nd Edition, McGraw-Hill India, 2018.

T2. Pease, Allan, and Barbara Pease. "The Definitive Book of Body Language." Bantam, 2006.

Reference Book(s):

R1. Cheryl Hamilton, "Communicating for Results: A Guide for Business and the Professions", 11th edition (1 January 2017), Wadsworth Publishing Co Inc.

R2. Whitcomb, Susan Britton. Resume Magic: Trade Secrets of a Professional Resume Writer. JIST Works, 2010.

R3. Carnegie, D. (2009). The Quick and Easy Way to Effective Speaking. Pocket Books.

Web References:

- 1 https://www.linkedin.com/pulse/interview-etiquette-dos-donts-interviews-brian-vanderwaal-fmy8e/
- 2 https://www.simplilearn.com/group-discussion-tips-article.

SEMESTER VI

Course Code: 23EVT601		Co	Course Title: CMOS Analog IC Design				
Course Category: Major			Course Level: Higher				
L:T:P(Hours/Week) 3:0:0	Credits	5:3	Total Contact Hours:45	Max Marks:100			

The course is intended to impart knowledge on MOSFET modeling, and its relevance in design and analysis of single ended, differential and Operational amplifiers.

Module I

Basics of MOSFET: Structure, Threshold voltage, IV characteristics, SPICE modeling, Large small signal behavior. **Second order effects of MOSFET:** Short channel effect, temperature, voltage dependence - MOSFET passive elements: Capacitors and Resistors. **Analog MOSFET Model:** Low frequency, High frequency Models, Temperature and Noise in MOSFET - **Analog MOS modeling:** Current mirror, current sources, self-biasing techniques, voltage dividers - **Basic MOS Amplifier:** Common source, Common drain and common gate-Small signal and large signal analysis of all basic MOS amplifier.

Module II

Differential Amplifier: Small signal, Large signal behavior-ICMR-PSRP-double ended, single ended, Gain, gain bandwidth and complete Analysis-Source coupled, cascaded load, wide sources. **Operational Amplifier:** Basic CMOS Amplifier – Fully differential Op-Amp – Small and Large signal analysis of Op-Amp, ICMR, CMRP, PSRR, Differential gain, common mode gain, Gain bandwidth and input, output impedances. Bandgap reference and beta multiplier based voltage references –design and analysis.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	•
CO 1: Apply MOSFET principles to analyze characteristics, simulate	Apply
behavior, and design circuit elements.	Арріу
CO 2: Apply MOSFET models to analyze circuit behavior, design biasing	Apply
techniques, and evaluate amplifier performance.	Арріу
CO 3 : Construct differential amplifier and evaluate performance	Apply
parameters like Gain, ICMR, and PSRR.	Арріу
CO 4: Design and analyze CMOS operational amplifiers and voltage	Δηρίντο
references.	Analyze

23 Hours

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO3	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO4	-	3	-	-	-	-	-	-	-	-	-	-	2	2

High = 3, Medium = 2, Low = 1

Text Book(s):

T1. Phillip E. Allen and Douglas R.Holberg ,"CMOS Analog Circuit Design", 2nd edition, 2002.

Reference Book(s):

R1. "Microelectronics" by Behzad Razavi, 2019

R2. "Microelectronics: An Integrated Approach" by Roger T.Howe and Charles G.Sodini, 2004

Web References:

1. https://archive.nptel.ac.in/courses/117/101/117101105/

2.https://www.academia.edu/27961808/CMOS_Analog_Circuit_Design_by_Allen_and_Holberg

Course Code: 23EVT602		Cours	e Title: ASIC Design					
Course Category: Major			Course Level: Higher					
L:T:P(Hours/Week) 3:0:0 Credits			Total Contact Hours: 45	Max Marks: 100				

This course aims to provide students with HDL coding, synthesize HDL constructs, understand RTL synthesis Flow, perform Static Timing Analysis for ASIC, provide detailed insight on physical design and its importance in design verification

Module I

22 Hours

ASIC Design Methodology & Design Flow: Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Design Methodology - Array based implementation approaches - Traditional and Physical Compiler based ASIC Flow. Verilog HDL Coding Style for Synthesis: HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Coding Style for Synthesis. Datapath and Control Logic Design. RTL Synthesis: RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of Logic Synthesizer - Technology Library Basics– Components of Technology Library –Synthesis Optimization- Technology independent and Technology dependent synthesis- Data path Synthesis – Low Power Synthesis - Formal Verification.

Module II

23 Hours

Basic Timing Analysis: Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths- Half-Cycle Paths- False Paths. **Advanced Timing Analysis**: Clock skew optimization – On-Chip Variations- AOCV-Time Borrowing- Setup and Hold Violation Fixing. **Physical Design:** Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS and routing– ECO flow – Signal Integrity Issues. **Physical Design Verification:** Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Analysis, Electro-Migration Analysis and ESD Analysis.

Course Outcomes	Cognitive Lovel	
At the end of this course, students will be able to:	Cognitive Level	
CO1: Design data path and control logic models using HDL code and ASIC methodologies	Apply	
CO2: Identify techniques to perform technology independent and	A reach a	
technology dependent synthesis for datapath elements.	Арріу	
CO 3: Utilize the various timing parameters and perform Static Timing Analysis for ASIC design	Apply	
CO 4: Implement physical design methodologies, including floor planning, placement, CTS, routing, and verification.	Apply	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO3	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO4	3	-	-	-	-	-	-	-	-	-	-	-	2	2

High = 3, Medium = 2, Low = 1

Text Book(s):

T1. Vaibbhav Taraate, ASIC Design and Synthesis RTL Design Using Verilog, Springer, First Edition, 2021, Singapore.

Reference Book(s):

R1. Khosrow Golshan, PHYSICAL DESIGN ESSENTIALS an ASIC Design Implementation Perspective, First Edition, 2010.

R2. Michael John Sebastian Smith, Application-Specific Integrated Circuits, First Edition, 2002.

R3. J. Bhasker and Rakesh Chadha, Static Timing Analysis for Nanometer Designs, Springer, First Edition, 2010, USA.

Web References:

1. www.vlsi.wpi.edu/cds/explanations/lvs.html

2. http://www.eng.auburn.edu/

3. http://www.geoffknagge.com/fyp/index.shtml#asic

Course code: 23EVT603	Course Title: Low Power IC Design					
Course Category: Major		Course Level: Higher				
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours:45	Max Marks:100			

Course Objective: To equip students with a knowledge on implementing algorithmic level, circuit level and software level power optimization techniques to design low power digital systems.

Module 1

22 Hours

Power Dissipation and Optimization in CMOS circuits: Power Dissipation in CMOS: Understanding the sources of power dissipation in CMOS devices, including static and dynamic power. **Power Optimization Techniques**: Algorithmic -Usecases; Circuit-level techniques to reduce power consumption, such as gate sizing, voltage scaling, and power gating. **Low Power Design for Arithmetic Circuits**: Designing low-power adders and multipliers using techniques like carry-save adders and parallel prefix adders.

Module II

23 Hours

Low Power Design and Implementation: Design of Low Power CMOS Circuits: Designing low-power memories, clock and interconnect structures, and advanced lowpower techniques. Power Estimation: Using various techniques to estimate power consumption at different design levels. Synthesis and Software Design for Low Power: Optimizing synthesis tools for low power and designing low power software applications. Compiler optimization for low power.

Course Outcomes	Cognitive Level		
At the end of this course, students will be able to:			
CO 1: Apply power optimization techniques, including gate			
sizing, voltage scaling, and power gating, to reduce power	Apply		
dissipation in CMOS circuits.			
CO 2: Implement low-power strategies to design arithmetic	Annly		
circuits, such as adders and multipliers.	Арріу		
CO3: Design low power memory elements and estimate	Apply		
power at various design levels.	Арріу		
CO4: Utilize synthesis and software level optimization techniques to build low power CMOS circuits.	Apply		

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO3	3	-	-	-	-	-	-	-	-	-	-	-	2	2
CO4	3	-	-	-	-	-	-	-	-	-	-	-	2	2

High = 3, Medium = 2, Low = 1

Text Books

T1. Kaushik Roy and S.C.Prasad, "Low power CMOS VLSI circuit design", Wiley, 2000.

T2. DimitriosSoudris, ChirstianPignet, Costas Goutis, "Designing CMOS Circuits for Low Power", Kluwer, 2002.

T3. J.B.Kulo and J.H Lou, "Low voltage CMOS VLSI Circuits", Wiley 1999.

Reference Books

R1. A.P.Chandrasekaran and R.W.Broadersen, "Low power digital CMOS design", Kluwer, 1995.

R2. AbdelatifBelaouar, Mohamed.I.Elmasry, "Low power digital VLSI design", Kluwer, 1995.

R3. James B.Kulo, Shih-Chia Lin, "Low voltage SOI CMOS VLSI devices and Circuits", John Wiley and sons, inc. 2001.

Web References

- 1. https://archive.nptel.ac.in/courses/106/105/106105034/
- 2. https://archive.nptel.ac.in/courses/108/105/108105118/

Course Code: 23EVL601	Cours	se Title: CMOS Analog IC Design Laboratory					
Course Category: Major		Course Level: Higher					
L:T:P(Hours/Week)0: 0: 3	Credits: 1.5	Total Contact Hours: 45	Max Marks:100				

The course is intended to impart knowledge on analog MOSEFET models, utilize same to build amplifiers, and perform gain and stability analysis using SPICE simulation.

List of Experiments

- 1. Characterize NMOS and PMOS for a given specification.
- 2. Design a CS amplifier with resistive load for a given specification.
- 3. Analyze the parameters of diode connected CS amplifier with resistive load counterpart.
- 4. Construct a CS amplifier with current mirror load for a given specification. Analyse the impact of bias voltage across the load element on the gain and UGB.
- 5. Design a MOS differential amplifier with double ended output and analyze the parameters.
- 6. Design a single ended MOS differential amplifier for a given specification.
- 7. Analyze the gain and UGB in a MOS differential amplifier with diode connected load.
- 8. Design a single ended Operational amplifier for a given specification.
- 9. Analyze the performance of double ended Operational amplifier for a given specification.
- 10. Design a bandgap voltage reference and analyze the impact of power supply and temperature variations on the output.

Course Outcomes	Cognitivo Loval
At the end of this course, students will be able to:	Cognitive Level
CO1: Utilize analog MOSEFET models to design Common source and differential amplifiers	Apply
CO2: Design and analyze Operational amplifier and voltage reference circuits.	Apply

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	1	1	-	1	2	2
CO2	3	-	-	-	1	-	-	-	1	1	-	1	2	2
Hiah –	ligh - 3 Medium - 2 Low - 1													

High = 3, Medium = 2, Low = 1

Reference Book:

R1. Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering and Technology

Course Code: 23EVL602	С	Course Title: ASIC Design Laboratory						
Course Category: Major		Course Level: Higher						
L:T:P(Hours/Week) 0: 0: 3	Credits: 1.	5 Total Contact Hours: 45	Max Marks:100					

The course is intended to impart knowledge on digital architecture design flow from RTL coding to Physical synthesis and verification.

45 Hours

List of Experiments

1. Design a Digital architecture for given specification

- 2. Implement FSM guidelines to design a digital architecture.
- 3. Perform Logical Synthesis of Digital architecture
- 4. Analyze the impact of technology dependent with technology independent synthesis of digital architecture.
- 5. Implement low power synthesis technique to reduce power consumption in digital architecture
- 6. Perform netlist optimization and Formal verification of the digital architecture
- 7. Perform various timing analysis of the digital architecture
- 8. Physical Synthesis of Digital Architecture
- 9. Physical Verification of digital architecture
- 10. Analyze the performance parameters of a gate-level and physical synthesis digital architecture

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1: Design a digital architecture and perform logical and timing synthesis.	Apply
CO2: Perform physical synthesis and physical verification of digital architecture.	Apply

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	1	1	-	1	2	2
CO2	3	-	-	-	1	-	-	-	1	1	-	1	2	2

High = 3, Medium = 2, Low = 1

Reference Book:

R1. Laboratory Manual Prepared by Faculty of EE(VLSI) Dr. Mahalingam College of Engineering andTechnology

Course Code: 23ESL601	Course Title: Professional Skills 5: Campus to Corporate (Common to all B.E/B.Tech Programmes)						
Course Category: SEC		Course Level: Higher					
L:T:P (Hours/Week) 0: 0: 2 Credits:		1 Total Contact Hours: 30		Max Marks: 100			

To enhance students' problem-solving skills in the aptitude segment while also equipping them with effective communication skills for professional settings and success in the interview process.

Module I Verbal Ability & Effective Communication

Verbal Ability

Parts of Speech – Tenses – Subject Verb Agreement – Synonyms – Antonyms – Idioms and Phrases - One Word Substitution – Reading Comprehension – Cloze test – Error Spotting.

Verbal Enhancement

Self-Introduction – Just A Minute- Picture Perception - Writing Skills: Sentence Types (Simple, Compound, Complex), Email drafting.

Campus to Corporate

Professional Grooming – Group Discussion – Impromptu – Interview.

Module II Quantitative & Reasoning Ability

15 Hours

15 Hours

Quantitative Ability

Simplification & Approximation, Number System, Percentage, Averages, Ratios and Proportion, Ages, Profit & Loss, Interest Calculation, Time and work, Time, speed and distance, Clocks and Calendar, Mixtures and alligation, Permutations and Combinations, Probability, Mensuration, Data Interpretation, Data Sufficiency

Reasoning Ability

Seating Arrangement, Blood relations, Directions Problems, Syllogisms, Number & Alpha Series, Coding and Decoding, Non Verbal Reasoning, Analogies, Cubes and Dices.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Exhibit strong problem-solving skills in the aptitude segment while enhancing their communication abilities for professional settings, enabling them	Apply
to excel in interviews and placement processes.	

Textbook(s):

T1: Technical Communication, 3E: Principles and Practice book. Authors. Meenakshi Raman, Sangeeta Sharma, 2006

T2: Pease, Allan, and Barbara Pease. "The Definitive Book of Body Language." Bantam, 2006.

T3: Dr. R. S. Aggarwal. "Quantitative Aptitude for Competitive Examinations" Sultan Chand & Sons Pvt. Ltd, New Delhi, 2024

T4: Dr. R. S. Aggarwal. "A Modern Approach to Verbal and Non-Verbal", Sultan Chand & Sons Pvt. Ltd, New Delhi, 2024

Reference Book(s):

R1: Cheryl Hamilton, "Communicating for Results: A Guide for Business and the Professions", 11th edition (1 January 2017), Wadsworth Publishing Co Inc.

R2: Whitcomb, Susan Britton. Resume Magic: Trade Secrets of a Professional Resume Writer. JIST Works, 2010.

R3: Carnegie, D. (2009). The Quick and Easy Way to Effective Speaking. Pocket Books.

R4: Arun Sharma. "Quantitative Aptitude for Common Aptitude Test", McGraw Hill Publications, 5th Edition, 2020

R5: Arun Sharma. "Logical Reasoning for Common Aptitude Test", McGraw Hill Publications, 6th Edition, 2021.

Web References:

- 1 https://www.linkedin.com/pulse/interview-etiquette-dos-donts-interviews-brian-vanderwaal-fmy8e/
- 2 https://www.simplilearn.com/group-discussion-tips-article
- 3 https://talentbattle.in
- 4 https://www.geeksforgeeks.org/aptitude-questions-and-answers/

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1							2	3	3		1		

High-3; Medium-2; Low-1

Vertical I

Analog VLSI Design

Course Code: 23EVE001	Cours	Course Title: Active Filters Design					
Course Category: Major			Course level : Highe	r / Advanced			
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100			

To enable students to understand and design first-order and second-order filters, including low-pass, high-pass, band-pass, band-stop, and all-pass filters; analyse GM-C and switched capacitor filters; and implement active filter designs with Butterworth and Chebyshev responses, emphasizing filter transfer functions and frequency response 22 Hours

Module I

First order filter – Bilateral transfer functions and frequency response – first order: low pass, high pass, band pass, band stop and act pass Filters -Second order: low pass high pass-band pass - band stop and ACL pass filter

Module II

Gm-c filter- elementary trans conductance, building blocks - Switched capacitor filters: First order building blocks-second order builders block- butterworth - chebyshev filter response and pate locator (active filter design) - Filter transfer function.

23 Hours

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Apply transfer functions to design and analyze first-order	Apply
second-order filters.	
CO 2: Apply Gm-C filter principles and switched capacitor filter	Apply
building blocks to design first-order and second-order filters.	
CO 3: Analyze the response of Butterworth and Chebyshev filters	Analyze
using transfer functions and pole-zero locations.	
CO 4: Analyze switched capacitor filter designs and their transfer	Analyze
functions, focusing on Butterworth and Chebyshev responses in	
active filter applications.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book(s):

T1.S.A. Pactitis, "Active Filters Theory and Design" Taylor & Francis, 2008. T2.Allen Waters, "Active Filters Theory and Design" Macmillan New Electronics, 1991

Reference Book(s):

R1. Wai Kai Chen, "Passive and Active Filters", Theory and Implementation,1986R2. Carson Chen, "Active Filter Design" Hayden Books, 1982R3. Lawrence P. Huelsman, "Active and Passive Analog Filter Design" 1993

Web References:

- 1. Active Filter Design NPTEL
- 2. Active Analog Filter Design IEEE Xplore

Course code: 23EVE002	Course 1	Title: Do	esign of CMOS Pha	se Lock Loop		
Course Category: Major			Course level : Higher / Advanced			
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total	Contact Hours:45	Max Marks:100		

This course enables students to design and analyse Phase-Locked Loop (PLL) systems. They will develop skills in constructing PLL blocks, evaluating noise impacts, and integrating these components for practical applications.

Module 1

22 Hours

Phase-Locked Loop (PLL) Fundamentals Basic PLL topology, Dynamics of simple PLL, XOR phase detector, drawbacks of simple PLL - Phase frequency detector and charge pump, Charge pump PLL, PFD/CP non-idealities, Up and down skew, Channel length modulation, Random mismatches, Clock feedthrough and charge injection, improved charge pumps - Loop filter, loop dynamics and stability analysis, higher order loops - Ring and LC oscillators, tuning in oscillators, Voltage controlled oscillators Module II 23 Hours

Advanced PLL Concepts and Noise Analysis: Noise in various building blocks of PLL, Noise in time and frequency domains, Jitter and phase noise in PLLs, Phase noise and power trade-off - Integer-N and Fractional-N frequency synthesizers, pre-scalers and dividers, spur reduction techniques - All digital PLLs, All-digital phase detectors, All-digital loop filters, digitally controlled oscillators

Course Outcomes	Cognitive Level		
At the end of this course, students will be able to:	Cognitive Level		
CO 1: Build the various blocks of PLL	Apply		
CO 2: Construct the PLL systems and perform various analysis.	Apply		
CO 3: Assess the impact of various noise sources and considerations in a PLL system	Analyze		
CO 4: Integrate building blocks of PLL to realize applications.	Apply		

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO4	3	-	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book

 "Phase-Locked Loops: Design, Simulation, and Applications" by Roland E. Best, 2015.

2. "Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level" by Behzad Razavi. 2020.

3. "Digital Phase-Locked Loops: Architectures and Applications" by Saleh Sheikholeslami

Reference Books

1. "Phase-Locking in High-Performance Systems: From Devices to Architectures" by Behzad Razavi , 2002.

2. "Analog and Digital Phase-Locked Loops" by Ravikanth Kshirsagar.

Web References

- 1. https://archive.nptel.ac.in/courses/108/106/108106184/
- 2. https://onlinecourses.nptel.ac.in/noc22_ee92/preview

Course code: 23EVE003	Course Title: High-Speed Interconnects for VLSI Design							
Course Category: Major			Course level : Highe	er / Advanced				
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100				

The course aims to enable students to design and implement high-speed interconnects in ASICs, addressing challenges in signal integrity, noise, and delay. Students will learn advanced techniques for optimizing interconnect performance using simulation tools and design strategies.

Module 1

22 Hours

Introduction to High-Speed Interconnects: Importance of interconnects in VLSI circuits, Challenges of high-speed interconnects (signal loss, delay, noise) Transmission Line Theory: Basic concepts: Resistance, capacitance, and inductance in interconnects, Signal delay and reflection in interconnects Signal Integrity: How signals degrade in interconnects (attenuation, crosstalk), Methods to maintain signal quality 23 Hours

Module II

Designing Interconnects: Techniques to reduce signal delay and improve speed, Importance of layout design to reduce noise and interference. High-Speed Signalling: Differential signalling (e.g., LVDS) for faster data transmission, improving performance (e.g., using shielded traces), Simulation Tools for Interconnects: Analysing interconnects using SPICE simulation - interconnect delay and noise.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	Cognitive Level
CO 1: Apply fundamental principles of high-speed interconnect	
design to analyze and solve practical challenges related to signal	Apply
loss, delay, noise, and integrity in VLSI circuits	
CO 2: Apply principles of transmission line theory to model	
resistance, capacitance, and inductance in interconnects and	Apply
evaluate their effects on signal integrity.	
CO 3: Design and optimize high-speed interconnects by	
implementing differential signalling, shielded traces, and SPICE	Analyse
simulation to minimize signal delay and noise.	
CO 4: Analyse interconnect design techniques, high-speed	
signalling methods, and SPICE simulation results to assess delay,	Analyse
noise, and performance improvements in VLSI systems.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book

T1 H B Bakog Lu, Circuits, "Interconnections and packaging for VLSI", Addison Wesley publishing company. 1990.

T2 J A Davis, J D Meindl, "Interconnect technology and design for Gigascale integration", Kluwer academic publishers, 2012.

T3 Nurmi J, Tenhumen H, Isoaho J, Jantsch A, "Interconnect Centric deisgn for advanced SOC

and NOC", Springer.2004.

Reference Books

R1. C K Cheng, J Lillis, S Lin, N Chang, "Interconnect analysis and synthesis", Wiley interscience. 1999.

R2. Hall S H, G W Hall and J McCall, High speed digital system design, Wiley inter-science.2000.

R3. Askok K Goel, "High speed VLSI interconnections", Wiley interscience, second edition,

2007.

Web References

1. https://onlinecourses.nptel.ac.in/noc22_ee125/preview

Course code: 23EVE004	Cou	rse Tit	Title: Art of Analog Layout design				
Course Category: Major			Course level : Higher / Advanced				
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total	Contact Hours:45	Max Marks:100			

The course aims to equip students with the knowledge and skills required to design layouts to optimize performance, and arrive at industry standard circuits.

Module 1 22 Hours Introduction to Analog Layout: CMOS Technology –overview, Introduction to analog layout design- Challenges, layout considerations, and design rules. Key Layout **Concepts:** Parasitics: Capacitance, resistance, and inductance in analog ICs. - Design Rule Checking (DRC) and Layout vs. Schematic (LVS) - Matching Principles: Commoncentroid layout, interdigitation, and symmetry. Device-Level Layout Considerations: Layout of transistors (MOSFETs, BJTs) - Capacitors, resistors, and inductors - Guard rings, shielding, and latch-up prevention.

Module II **Operational Amplifier Layout Basics:** Layout of input differential pairs, gain stages, and output drivers - Matching considerations for minimizing offsets. Design Validation and Tools: Post-layout simulation basics - Introduction to parasitic extraction tools. Case Study: Hands-on example: Layout design of basic analog circuits -current mirror, Differential amplifier, Operational amplifier.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Apply CMOS analog layout principles to design DRC-	Apply
and LVS-compliant circuits.	
CO 2: Apply advanced layout techniques to optimize	Apply
performance, reliability, and manufacturability.	
CO 3: Design and validate complex analog layouts using	Analyse
industry-standard tools	
CO 4: Analyze operational amplifier layout techniques and	Analyse
post-layout simulation results to evaluate matching, offsets,	
and parasitic effects in analog circuits.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	1
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Book

T1 Hastings, A., "The Art of Analog Layout", Prentice Hall, 2nd Edition, 2005.

Reference Books

R1: Baker, R. J., "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 3rd Edition, 2010.

R2: Weste, N., Harris, D., "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 4th Edition, 2010.

R3: Allen, P. E., Holberg, D. R., "CMOS Analog Circuit Design", Oxford University Press, 3rd Edition, 2011.

Web References

- 1. NPTEL Analog IC Design and Layout
- 2. IEEE Xplore Advanced Analog Layout Techniques
- 3. YouTube Analog Layout Techniques for Beginners

Vertical II Digital VLSI Design

Course code: 23EVE005	Cours	Course Title: Digital IC Design				
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

The course is intended to equip students with a knowledge on design of digital circuits and memory elements in CMOS technology and improve performance using high speed and low power design techniques.

Module 1

Introduction to Digital IC Design, CMOS Transistors: Basic structure of a CMOS Implementation, Role of CMOS in digital circuits. Inverters: Operation, Static characteristics: Voltage transfer characteristics. **Logic Gates:** CMOS Implementation of AND, OR, NOT, NAND, NOR. combine logic gates to create simple circuits.

Module II

Sequential Logic Circuits: Basic memory elements: Flip-flops and latches-Simple sequential circuits like counters. **Dynamic Logic Circuits:** Introduction, Implementation to realize faster circuits. Low Power Design Techniques, High-Speed Circuit Design techniques.

Course Outcomes	Cognitive Level		
At the end of this course, students will be able to:	Cognitive Level		
CO 1: Apply CMOS principles to design digital circuits and	Apply		
determine inverter behavior.	Арріу		
CO 2: Apply CMOS to implement basic logic gates and	Apply		
combine them to design simple circuits.	Арріу		
CO 3: Analyze flip-flops, latches, and simple sequential	Δροίντο		
circuits like counters.	Analyze		
CO 4: Analyze dynamic logic circuits for high-speed and low-power design implementations.	Analyze		

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	1	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	I	-	-	-	-	-	-	-	2	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Books

T1 "CMOS Digital Integrated Circuits: Analysis and Design" by Sung-Mo Kang and Yusuf Leblebici,

T2 "Digital Integrated Circuits: A Design Perspective" by Jan M. Rabaey, 2003.

22 Hours

T3 "Digital VLSI Chip Design with Cadence and Synopsys CAD Tools" by Erik Brunvand, 2009.

T4 CMOS VLSI Design: A Circuits and Systems Perspective by Neil H.E. Weste and David Harris, 2010.

Reference Books

R1. "Introduction to CMOS VLSI Design" by Neil H. E. Weste and David Harris

R2. "Design of Analog CMOS Integrated Circuits" by Behzad Razavi, 2000.

R3 "Principles of CMOS VLSI Design" by Neil H. E. Weste and David Harris, 2016.

R4 Modern VLSI Design: IP-Based Design by Wayne Wolf, 2008.

R5 Digital Design of Signal Processing Systems: A Practical Approach by Shoab Ahmed Khan, 2011.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc21_ee22/preview
- 2. https://www.iitg.ac.in/eee/syllabus-details.php?slno=R0VVSGZBbzhaUTY wVEhEV2RWWUVVQT09
- 3. https://www.cadence.com/en_US/home/training/all-courses/86305.html

Course code: 23EVE006	Course	e Title: V	Fitle: VLSI Digital Signal Processing			
Course Category: Major			Course level : Hi	gher / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total C	Contact Hours:45	Max Marks:100		

This course covers optimization techniques in VLSI DSP systems, focusing on algorithms, iteration bounds, pipelining, parallel processing, retiming, and unfolding. It also explores bit-level arithmetic architectures, redundant arithmetic, and low-power design methods for efficient DSP implementation.

Module 1

Introduction to DSP systems: Representation of DSP algorithms; Iteration Bound: Definition, Examples, Algorithms for computing Iteration bound; **Pipelining and Parallel Processing:** Definitions, Pipelining and parallel processing of FIR filters, Pipelining and parallel processing for low power; Retiming: Definitions and Properties, Solving system of Inequalities, Retiming techniques; Unfolding: Definition, An algorithm for unfolding, Applications of unfolding

Module II

Bit-Level arithmetic architectures: Parallel multipliers, Bit-serial multipliers, Bit-Serial FIR filter design and Implementation; Redundant arithmetic: Redundant number representation, Carry-free radix-2 addition and subtraction, radix-2 hybrid redundant multiplication architectures; **Low-power design:** Theoretical background, Scaling versus power consumption, Power analysis, Power reduction techniques, Power estimation approaches.

Course Outcomes	Cognitive Level			
At the end of this course, students will be able to:				
CO 1: Explain the various representation of DSP algorithms	Understand			
CO 2: Analyze parallel processing, pipelining, retiming, and	Δροίνσο			
unfolding methods for optimizing digital system performance.	Analyze			
CO 3: Analyze bit-level arithmetic and redundant arithmetic	Δροίνσο			
for efficient DSP architectures.	Analyze			
CO 4: Analyze low-power design concepts, power	Analyza			
optimization techniques, and power estimation strategies.	Analyze			

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	2	-
CO3	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

23 Hours

Text Books

T1 U. Meyer-Baese, DSP with FPGA, Springer, 2004.

T2 K. K. Parhi, VLSI DSP Systems, Wiley, 2003.

T3 R.G. Lyons, Understanding Digital Signal Processing, Pearson Education, 2004.

Reference Books

R1 Prithviraj Kabisatpathy, Fault-Tolerant Architectures for Cryptography and Hardware Security, 2018

R2 Charles E. Ebeling, An Introduction to Reliability and Maintainability Engineering, 1997

R3 Razavi, RF Microelectronics, Pearson Education, 2011

Web References

- 1. https://www.ece.umn.edu/users/parhi/SLIDES/chap2.pdf
- 2. https://www.oreilly.com/library/view/vlsi-digital-signal/9780471241867/sec-1.1.html
- 3. https://ieeexplore.ieee.org/document/1172148

Course code: 23EVE007	7 Course Title: Scripting Language for Electronic Design Automation					
Course Category: Major		Course level : Higher / Advanced				
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

This course aims to teach students to use TCL and PERL for automating tasks in EDA, including data manipulation, tool integration, and GUI development with TCL Tk. Students will learn advanced scripting techniques for optimizing workflows in VLSI and circuit design automation.

Module I

TCL Basics: Tool Command Language (TCL) fundamentals: Syntax, variables, expressions, and string processing, TCL Lists and control structure commands, Procedures, scope, TCL arrays, Working with files and programs. **PERL Basics:** History and concepts of PERL, Data types: Scalars, arrays, and lists, Control structures and basic I/O, Regular expressions and functions.

Module II

Advanced TCL: Quoting issues, regular expressions, and script libraries, Reflection and debugging, Namespaces and event-driven programming, Internationalization and socket programming. **PERL Advanced Concepts:** Directory access and manipulation, Process management, packages, and modules, TCL Tool Kit (TK Basics), Fundamentals of TK (Tool Kit), Geometry managers: Pack, grid, and place, Binding commands to events, Working with TK widgets.

Course Outcomes	Cognitivo Loval			
At the end of this course, students will be able to:	Cognitive Level			
CO 1: Understand TCL fundamentals, including syntax, control	Understand			
structures, and file handling for scripting applications.	Understand			
CO 2: Apply PERL programming concepts, including data types,				
control structures, I/O, regex and functions, to develop scripting	Apply			
solutions				
CO 3: Analyze advanced TCL features for efficient scripting in	Δροίντο			
VLSI design and verification	Analyze			
CO 4: Evaluate PERL advanced concepts and TCL TK toolkit for	Evoluato			
efficient automation and GUI development in VLSI design.	Evaluate			

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	1	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-	2	1

High = 3, Medium = 2, Low = 1

23 Hours

Text Book

T1: John K. Ousterhout, Ken Jones, "Tcl and the Tk Toolkit", Pearson Education, Second Edition, 2010.

T2:"Practical Programming in Tcl and Tk" by Brent B. Welch (Addison-Wesley Professional, 2003).

T3:"Perl Best Practices" by Damian Conway (O'Reilly Media, 2005).

Reference Books

R1:LarryWall, Tom Christiansen, John want, "Programming PERL", Oreilly Publications, 4th ed 2012

R2:Naveed Sherwani, Algorithms for VLSI physical design Automation, Kluwer Academic Publishers, 2013.

R3:"Learning Perl" by Randal L. Schwartz, brian d foy, Tom Phoenix (O'Reilly Media, 7th Edition, 2011).

R4:"The Art of Unix Programming" by Eric S. Raymond (Addison-Wesley, 2003).

Web References

- 1. https://ieeexplore.ieee.org/document/915211
- 2. https://www.researchgate.net/publication/3893221_Scripting_for_EDA_tools_a_case __study
- 3. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0a1c072d36dcbec 44fd4b14e431d1544c915f1c4

Course code: 23EVE008	С	Course Title: Memory Devices and Circuits				
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

The course aims to equip students with the knowledge and skills on the design and operation of volatile and non-volatile memory, including CMOS circuits, DRAM, FLASH, and memory compilers, with insights into next-generation memory technologies.

Module 1

Types of Memory: Volatile Memory, Non-Volatile Memory, On-chip memory, On-chip Memory types. Review of CMOS circuit design, Sensing circuitry basics, Read/ Write assist circuitry and other peripheral circuitries, Next generation SRAM cell.

Module II

Introduction to DRAM, High speed DRAM architectures Operation of FLASH memories (FLASH array sensing and programming), Charge Pump circuits. Basic of memory compiler for SRAM architecture using scripting language, Memory unit in MPU/MCU.

Course Outcomes	Cognitive Lovel				
At the end of this course, students will be able to:	Cognitive Level				
CO 1: Analyze memory types, CMOS design, sensing circuits, and	Apolyzo				
next-gen SRAM for VLSI development.	Analyze				
CO 2: Analyze DRAM, high-speed DRAM architectures, FLASH					
memory operations, array sensing, programming, and charge	Analyze				
pump circuits for advanced memory systems.					
CO 3: Design and optimize SRAM architecture using memory					
compilers and scripting languages, focusing on memory units in	Create				
MPU/MCU for advanced system integration					

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	-	-	-	-	-	-	-	-	-	-	1	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-	2	1

High = 3, Medium = 2, Low = 1

Text Book

T1 "Memory Devices and Circuits: Design and Applications" by Jean-Michel Gorce and François Lemoine.

T2 "CMOS VLSI Design: A Circuits and Systems Perspective" by Neil Weste and David Harris, 2010

T3 "High-Speed Digital Design: A Handbook of Black Magic" by Howard Johnson and Martin Graham, 1993

22 Hours

T4 "Memory Systems: Cache, DRAM, Disk" by Bruce Jacob, Spencer Ng, and David Wang, 2008.

T5 "Design of Analog CMOS Integrated Circuits" by Behzad Razavi, 2000.

Reference Books

R1. "Digital Integrated Circuits: A Design Perspective" by Jan M. Rabaey, 2003

R2. "Design of CMOS VLSI Circuits for Telecommunications" by Ramon P. S. Mahadevan and William R. F. sS. R. Mahadevan

R3."CMOS Digital Integrated Circuits: Analysis and Design" by Sung-Mo Kang and Yusuf Leblebici, 2002.

R4."Low-Power CMOS VLSI Circuit Design" by Kaushik Roy and Sharat C. Prasad, 2009. **Web References**

- 1. https://www.taylorfrancis.com/books/mono/10.1201/9781003138747/semiconductormemory-devices-circuits-shimeng-yu
- 2. https://online.stanford.edu/courses/ee309a-semiconductor-memory-devices-and-circuit-design
- 3. https://www.sciencedirect.com/journal/memories-materials-devices-circuits-and-systems

Course code: 23EVE009	Course Title: Verification Methodologies							
Course Category: Major			Course level : Higher / Advanced					
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100				

This course covers key verification methodologies, including simulation-based, formal, and coverage-driven approaches, with a focus on UVM-based verification. It teaches testbench construction, constraint-random testing, and advanced techniques for efficient verification.

Module 1

Introduction to Verification: Definition and importance of verification, types of verification (functional, performance, etc.), and its role in the design cycle. **Verification Methodologies:** Formal verification, simulation-based verification (test benches, directed tests, random tests). **Test bench Architecture:** Components of a test bench (driver, monitor, checker, scoreboard), stimulus generation, and response checking. **CoverageDriven Verification:** Code coverage (line, branch, expression), functional coverage, and assertions for measuring verification completeness.

Module II

Introduction to UVM: Overview of the Universal Verification Methodology (UVM), its core components (test, environment, agent, etc.), and its benefits. UVM Test Bench Architecture: Building a UVM test bench using the standard UVM components, including configuration, transaction-level modelling, and score boarding. Constraint-Random Verification: Using constraints to generate random test cases, achieving high functional coverage and accelerating verification. Advanced UVM Techniques: Register model, sequence library, coverage analysis, and debugging techniques for efficient verification.

Course Outcomes	Cognitivo Lovol
At the end of this course, students will be able to:	Cognitive Level
CO 1:Understand verification types and methodologies (formal,	
simulation-based) in the design cycle, including test benches and	Understand
random tests.	
CO 2: Analyze test bench components and coverage-driven	Analyza
verification techniques to assess verification completeness	Analyze
CO 3: Construct and enhance UVM test benches by utilizing core	
components, configuration, transaction-level modeling, and score	Apply
boarding for robust verification	
CO 4: Analyze constraint-random verification and advanced UVM	
techniques to optimize test case generation, coverage, and	Analyze
debugging for efficient verification.	

23 Hours

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	1	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	2
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Books:

T1:Vanessa R. Copper, "Getting started with UVM: A Beginner's Guide", Verilab Publishing, First Edition, 2013.

T2:Ray Salmei, "The UVM Primer: A Step-by-Step Introduction to the Universal Verification Methodology" Boston Light Press; First edition, 2013.

T3:Ravi B. R., "UVM Cookbook: A Practical Guide to the Universal Verification Methodology", Xilinx Press, 2016.

Reference Books

R1:Christian B Spear, "System Verilog for Verification: A guide to learning the Testbench language features", Springer publications, Third Edition, 2012.

R2:Janick Bergeron, "Writing Testbenches using System Verilog" Synopsys Inc., Springer Publications, 2006.

R3:Adam T. McNeill, "Advanced Digital Design with the Verilog HDL", Wiley, 2nd Edition, 2011.

R4:Brian L. Evans, "Verification Methodology Manual for SystemVerilog", Springer, 2011. R5:Ashok B. Mehta, "Digital Design and Verification with SystemVerilog", Pearson Education, 2015.

Web References

1. https://semiengineering.com/knowledge_centers/eda-esign/verification/methodology/

2. https://www.design-reuse.com/articles/54702/importance-of-vlsi-design-verification-and-its-methodologies.html

3. https://www.acldigital.com/blogs/understanding-role-verification-and-validation-vlsi-product-development

Vertical III VLSI Applications

Course code: 23EVE010	Course Tit Video Pro	Course Title: VLSI Architectures for Image and Video Processing					
Course Category: Major		Course level : Higher / Advanced					
L:T:P(Hours/Week) 3: 0: 0	Credits:3	I Contact Hours:45	Max Marks:100				

This course covers VLSI architectures for image and video processing, focusing on DSPs, application-specific ICs, and advanced techniques like mapping algorithms to hardware and optimizing arithmetic operations. It aims to equip students with the knowledge to design efficient, real-time processing systems.

Module 1

Fundamentals of Image Processing: Overview of image processing tasks, low-level and intermediate-level operations, Requirements for image processor architectures. **Systems for Image and Video Processing:** Standard DSPs and application-specific ICs for image and video processing, SHARC and Blackfin processors: memory management, on-chip resources, and real-time implementation.

Module II

Mapping Algorithms to VLSI Architectures: Mapping DSP algorithms to hardware: uniprocessor, shared memory, and vector-multiplier-based implementations, Isomorphic mapping of SFGs, numerically equivalent implementations, and Single Instruction Computers (SIC). **Optimized Arithmetic in VLSI Systems:** Bit-serial and digit-serial arithmetic, CORDIC algorithms, and shift-accumulator optimization, Implementation of FFT processors, address generators, twiddle factors, and control PEs for efficient image and video processing.

Course Outcomes	Cognitivo Lovol	
At the end of this course, students will be able to:	Cognitive Level	
CO 1: Apply the fundamental concepts of image processing,		
including tasks, operations, and architectural requirements for	Apply	
image processors.		
CO 2: Analyze image and video processing using DSPs, ICs,		
and SHARC/Blackfin processors with a focus on memory	Analyze	
management and real-time implementation.		
CO 3: Analyze DSP algorithms for VLSI using uniprocessor,		
shared memory, and vector-multiplier architectures with	Analyze	
isomorphic mapping.		
CO 4: Analyze and optimize arithmetic for VLSI using bit-		
serial/digit-serial techniques, CORDIC, shift-accumulator, and	Analyze	
FFT processors.		

22 Hours

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	1
CO3	-	3		-	-	-	-	-	-	-	-	-	2	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	-

High = 3, Medium = 2, Low = 1

Text Books

T1:Lars Wanhammer, "DSP Integrated Circuits", Elsevier India Pvt. Ltd, New York, 2012. T2:Phil Lapsley, Jeff Bier, AmitSholam and Edward A.Lee, "DSP Processor Fundamentals-Architectures, and Features", Wiley India, reprint 2011.

T3:X. Liu and K. Chakrabarty, VLSI Architectures for Video Compression: Algorithms and Hardware Design Techniques, Wiley, 2007.

T4:K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, *Wiley-Interscience*, 1999.

Reference Books

R1:A.V.Oppenheim et.al, "Discrete-time Signal Processing", Pearson Education, 2013. R2:Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", 1998

R3:P.P.Vaidyanathan, Multirate Systems & Filter Banks, Prentice Hall, Englewood cliffs, NJ, 199

Web References

- 1. https://ieeexplore.ieee.org/document/735383
- 2. https://link.springer.com/chapter/10.1007/978-1-4612-2018-3_14
- 3. https://ieeexplore.ieee.org/document/7559816

Course code: 23EVE011	Course Title: VLSI design for Neural Networks					
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

This course introduces the fundamentals of neural networks and VLSI design, focusing on key concepts such as neural network architecture, activation functions, and hardware requirements. It explores VLSI design trade-offs, efficient architectures, and optimization techniques for power and performance, with practical applications in FPGA prototyping and ASIC design.

Module 1

Introduction to Neural Networks: Basics of neural networks: architecture, activation functions, and learning methods, Hardware requirements: scalability, parallelism, and power efficiency. **VLSI Design Fundamentals for Neural Networks:** Key VLSI design concepts: trade-offs in area, power, and speed, Hardware mapping of neural networks: memory, pipelining, and parallelism, Arithmetic considerations: fixed-point vs. floating-point implementations.

Module II

VLSI Architectures for Neural Networks: Processing elements: multipliers, accumulators, and activation units, Efficient architectures: systolic arrays, memory compression, and quantization. **Optimization and Advanced Techniques:** Power and performance optimization: pruning, clock gating, and sparsity exploitation, Real-time implementation: FPGA prototyping and ASIC design.

Course Outcomes	Cognitivo Lovol		
At the end of this course, students will be able to:	Cognitive Level		
CO 1: Analyze neural networks and hardware requirements for application suitability.	Analyze		
CO 2: Analyze key VLSI design concepts, hardware mapping of neural networks, and arithmetic considerations for efficient implementations.	Analyze		
CO 3: Apply VLSI architectures for neural networks, including processing elements and efficient architectures.	Apply		
CO 4: Analyze the effectiveness of pruning, clock gating, and sparsity exploitation in real-time systems.	Analyze		

22 Hours
Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-	2	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	1

High = 3, Medium = 2, Low = 1

Text Books

T1:"Digital VLSI Design and Simulation with Verilog" by Suman Lata Tripathi , 2021 **T2:**"VLSI Design for Signal, Speech, and Image Processing" by Kailash J. Karande T3:"VLSI Design: A Practical Introduction" by J. Douglas Neath and Zainalabedin Navabi

Reference Books

R1:"VLSI Signal Processing Systems" by Keshab K. Parhi, 1999

R2:"Deep Learning for Computer Architects" by Brandon Reagen, Robert Adolf, Paul Whatmough, and David Brookss, 2017

R3:"Neural Networks and Learning Machines" by Simon Haykin, 2007

Web References

1. van den Bout, D., Franzon, P., Paulos, J. *et al.* Scalable VLSI implementations for neural networks. J VLSI Sign Process Syst Sign Image Video Technol **1**, 367–385 (1990). https://doi.org/10.1007/BF00929928

2. https://www.researchgate.net/publication/12311499_VLSI_Implementation_of_N eural_Networks

3. https://ieeexplore.ieee.org/abstract/document/100386

Course code: 23EVE012	Course Title: VLSI for wireless Communications						
Course Category: Major			Course level : Higher / Advanced				
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100			

The course covers wireless communication systems, modulation techniques, and error correction. It focuses on the design of VLSI receivers and frequency synthesizers, emphasizing mixers, noise, and power efficiency.

Module 1

Wireless Systems and Standards: Overview of wireless communication systems, key standards (e.g., Wi-Fi, cellular, Bluetooth), and their applications. **Modulation and Demodulation:** Introduction to digital modulation techniques (e.g., QAM, PSK), their power and bandwidth efficiency, and demodulation methods. **Channel Coding:** Error correction techniques (e.g., convolutional codes, turbo codes) for reliable data transmission over noisy channels.

Module II

Mixer Design: Analysis and design of active (e.g., Gilbert cell) and passive (e.g., switching) mixers, including considerations for linearity, noise figure, and conversion gain. **Frequency Synthesizer Design**: PLL-based frequency synthesizers, including phase detector, charge pump, VCO, and loop filter design. Analysis of phase noise and spurious signals.

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:	Cognitive Level	
CO 1: Apply techniques to analyze wireless communication		
systems, modulation methods for ensuring reliable	Apply	
transmission.		
CO 2: Apply channel coding techniques for error correction	Apply	
in noisy channels.	Арріу	
CO 3: Analyze the design of active and passive mixers,	Δροίνσο	
focusing on linearity, noise figure, and conversion gain.	Analyze	
CO 4: Analyze the performance of PLL-based frequency	Apolyzo	
synthesizers, focusing on phase noise and spurious signals.	Analyze	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	1
CO3	-	3	-	-	-	-	-	-	-	-	-	-	-	2
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	2

High = 3, Medium = 2, Low = 1

23 Hours

Text Books

T1:Bosco Leung, "VLSI for Wireless Communication, Second Edition, Springer,2011. T2:Wen-Chih Kan, "VLSI Architecture for High-capacity Wireless Communications", University of Minnesota, 2007.

T3:P. Vijay Kumar, P. Pramod, "VLSI Design for Wireless Communication Systems", Wiley, 2014.

Reference Books

R1:Emad N Farag, M.I Elmasry, "Mixed Signal VLSI Wireless Design Circuits and Systems", Kluwer Publications, 2013.

R2:David Tsee, Pramod Viswanath," Fundamentals of Wireless Communication", Cambridge Univ Press, 2005.

R3:Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 2004.

- 1. https://www.design-reuse-embedded.com/industryexpertblogs/vlsi-design-future-ofwireless-communication/
- 2. https://www.analog.com/en/applications/technology/wireless-communication.html
- 3. https://www.cadence.com/en_US/home.html

Course code: 23EVE013	Course Title: Integrated Circuits for Optical Communication					
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

This course explores the role of integrated circuits (ICs) in optical communication systems, covering the basics of optical IC design, including waveguides and amplifiers, and advanced topics like amplifiers, oscillators, PLLs, and high-speed transmitter circuits for efficient optical signal processing.

Module 1

23 Hours

22 Hours

ICs in Optical Communication Systems: Importance of ICs in communication: CATV signal distribution, capacity, coverage, and optical bandwidth, Key factors: insertion loss, polarization sensitivity, reconfiguration time, and blocking properties, Optical amplifier designs and gate switch matrix examples. **Optical Integrated Circuits**: Features and basics- waveguide theory, design, and fabrication, Components: gratings, passive waveguides, and functional waveguide devices, Practical examples and applications of optical ICs.

Module II

Amplifiers and Oscillators: Trans-impedance amplifiers (TIA): open-loop, feedback, and high-performance techniques, Amplification strategies: broadband techniques and distributed amplification, Oscillators: ring, LC, voltage-controlled oscillators, and distributed oscillators. PLL and Transmitter Circuits: PLLs: charge pump PLLs, delay-locked loops, and applications, High-speed designs: clock data recovery (CDR), jitter considerations, and multiplexers, Laser and modulator drivers for high-speed transmission.

Course Outcomes	Cognitive Level		
At the end of this course, students will be able to:	Cognitive Level		
CO 1: Explore the role of ICs in optical communication systems, focusing on key factors and amplifier designs.	Understand		
CO 2: Analyze the design and components of optical integrated circuits, focusing on waveguide theory and its applications	Analyze		
CO 3: Analyze amplifiers and oscillators, focusing on TIA techniques, amplification strategies, and oscillator designs	Analyze		
CO 4: Analyze PLL circuits, high-speed designs, and transmitter circuits for high-speed transmission applications.	Analyze		

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	2
CO3	-	3	-	-	-	-	-	-	-	-	-	-	2	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-	1	-

High = 3, Medium = 2, Low = 1

Text Books

T1:Behzad Razavi, "Design of Integrated circuits for optical communication", Wiley & Sons Ltd, 2012.

T2:Hiroshi Nishihara, Masamitsu Haruna, and Toshiaki Suhara, "Optical Integrated Circuits", McGraw-Hill, New York, 2002.

T3:Edmond J.Murphy(ed), "Integrated Optical Circuits and Components: Design and Applications", World scientific Publishing Ltd, U.S.A, 2002.

Reference Books

R1:R. J. Hsu, "Optical Integrated Circuits: Materials and Devices", Springer, 2009.

R2:M. S. Zied, "Integrated Optics: Theory and Technology", Springer, 2008.

R3:Paul W. Krug, "Optical Fiber Communications: Principles and Practice", Pearson, 2013.

Web References

1. van den Bout, D., Franzon, P., Paulos, J. *et al.* Scalable VLSI implementations for neural networks. *J VLSI Sign Process Syst Sign Image Video Technol* **1**, 367–385 (1990). https://doi.org/10.1007/BF00929928

2. https://download.e-bookshelf.de/download/0000/6447/78/L-G-0000644778-0002366091.pdf

3. https://ieeexplore.ieee.org/document/1017945

Vertical IV Fabrication and Advanced Design Techniques

Course code: 23EVE014	E014 Course Title: Microchip Fabrication							
Course Category: Major			Course level : Higher / Advanced					
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total	Contact Hours:45	Max Marks:100				

This course aims to provide an in-depth understanding of the principles and techniques involved in the fabrication of microchips. It covers semiconductor materials, processes like photolithography and etching, advanced techniques in device integration, and explores modern trends in semiconductor manufacturing.

Module 1

Introduction to Semiconductor Manufacturing: Evolution of microchip fabrication -Overview of semiconductor materials and properties. **Photolithography:** Principles of optical lithography - Mask alignment and exposure systems. **Deposition Techniques:** Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD) - Atomic Layer Deposition (ALD) - Etching Processes: Wet etching and dry etching techniques - Plasma and reactive-ion etching processes. **Thermal Oxidation and Diffusion: Oxidation** mechanisms - Doping and diffusion techniques

Module II

Metallization and Planarization: Interconnect technologies and chemical-mechanical polishing - Transistor Fabrication and Device Integration: MOSFETs, FinFETs, and multi-layer device challenges - Packaging and Testing: Wafer-level packaging, testing strategies, and failure analysis - Advanced Manufacturing Techniques: EUV lithography, 3D ICs, and emerging materials like carbon nanotubes. - Sustainability in Semiconductor Manufacturing: Green manufacturing and reducing environmental impact.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Explain the fundamental processes in microchip	Understand
fabrication, including material preparation and lithography.	
CO 2: Apply key techniques like deposition and etching to	Apply
design simple semiconductor devices.	
CO 3: Analyze advanced fabrication challenges and propose	Analyse
sustainable solutions for modern semiconductor processes.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	3
CO3	-	3	-	-	-	-	-	-	-	-	-	-	3	3

High = 3, Medium = 2, Low = 1

23 Hours

Text Book

T1:Stephen A. Campbell, *The Science and Engineering of Microelectronic Fabrication*, 2001.

T2:S. M. Sze and Kwok K. Ng, *Physics of Semiconductor Devices*. 2008.

Reference Books

R1:Simon Sze, VLSI Technology. 2017.

R2:Michael Quirk and Julian Serda, Semiconductor Manufacturing Technology. 2000.

- 1. IEEE Xplore Digital Library
- 2. Semiconductor Engineering Articles

Course code: 23EVE015	r Management and	Clock		
Course Category: Major			Course level : Hig	her / Advanced
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total	Contact Hours:45	Max Marks:100

This course provides an understanding of power management strategies and clock distribution techniques in modern electronic systems. It focuses on low-power design methodologies, clock generation, and distribution challenges in high-performance digital systems, aiming to optimize energy efficiency and clock signal integrity.

Module 1

Introduction to Power Management: Power dissipation in CMOS systems - Active, static, and dynamic power consumption, Low-Power Design Techniques: Voltage scaling, power gating, and clock gating - Dynamic Voltage and Frequency Scaling (DVFS), **Power Delivery Networks (PDN):** Components of PDNs (VRMs, decoupling capacitors, etc.) - PDN impedance and stability considerations, Thermal Management: Heat dissipation techniques.

Module II

Basics of Clocking in Digital Systems: Clock generation (PLL, DLL) - Characteristics of a clock signal: skew, jitter, and duty cycle, **Clock Distribution Techniques:** H-tree, mesh, and hybrid clock distribution - Clock routing challenges and optimization, Low-Power Clocking: Clock gating and dynamic clock adjustment - Techniques to minimize clock power consumption, Emerging Clocking Trends: Resonant clocking techniques - Optical and wireless clock distribution

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Understand power consumption sources and apply	Understand
low-power design strategies	
CO 2: Design efficient power delivery and thermal	Apply
management systems for electronic circuits.	
CO 3: Analyze and implement robust clock distribution	Analyse
networks for high-performance systems.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	1	1	-	-	-	-	3	3
CO3	-	3	-	-	-	-	I	I	I	-	-	-	3	3

High = 3, Medium = 2, Low = 1

22 Hours

Text Books

T1:Jan Rabaey, Low Power Design Essentials. 2009.

T2:D. Harris and S. Harris, *Digital Design and Clocking Techniques*.

Reference Books

R1:S. M. Kang and Y. Leblebici, *CMOS Digital Integrated Circuits: Analysis and Design.* 2002.

R2:K. Roy and S. Prasad, Low-Power CMOS VLSI Circuit Design. 2009.

- 1. IEEE Xplore Digital Library
- 2. Semiconductor Engineering Articles

Course code: 23EVE016	Course Title: Reliability in VLSI Circuits					
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

To understand reliability challenges in VLSI circuits, analyze failure mechanisms, and design solutions for improving reliability in semiconductor devices and systems.

Module 1 23 Hours Failure Mechanisms in VLSI Circuits: Electromigration, time-dependent dielectric breakdown (TDDB), and hot carrier injection (HCI) - Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI) - Impact of aging on device reliability, **Reliability Modelling:** Statistical methods for reliability prediction - Fault tree analysis and failure mode effects analysis (FMEA) - Monte Carlo simulations for reliability assessment

Module II

22 Hours

Reliability Enhancement Techniques: Error detection and correction codes (EDAC) -Redundancy and fault-tolerant design for VLSI circuits - Techniques for improving device lifetime and reliability, **Testing and Validation of Reliability:** Accelerated life testing and stress testing for VLSI devices - Built-in self-test (BIST) for reliability assurance -Reliability-aware design tools and methodologies

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Understand failure mechanisms affecting VLSI circuits.	Understand
CO 2: Analyze and model reliability issues in semiconductor	Analyze
devices.	
CO 3: Apply design techniques to enhance reliability and	Apply
validate circuits.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	-	3	-	-	-	-	-	-	-	-	-	-	3	3
CO3	3	-	-	-	-	-	-	-	-	-	-	-	3	3

High = 3, Medium = 2, Low = 1

Text Books

T1;S. M. Sze, VLSI Technology, 2017

T2: Mohammad Tehranipoor, Emerging Topics in Hardware Security. 2021

Reference Books

R1:Prithviraj Kabisatpathy, *Fault-Tolerant Architectures for Cryptography and Hardware Security*. 2018

R2:Charles E. Ebeling, An Introduction to Reliability and Maintainability Engineering.1997

- 1. IEEE Xplore Digital Library
- 2. Semiconductor Engineering Articles

Course code: 23EVE017	Course Title: Synthesis and Optimization of VLSI Circuits					
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

To understand reliability challenges in VLSI circuits, analyse failure mechanisms, and design solutions for improving reliability in semiconductor devices and systems. Module 1

Introduction to VLSI Synthesis: Overview of VLSI design flow and synthesis steps, Design representations: RTL, FSMs, and Boolean equations, Basics of logic synthesis: two-level and multi-level logic synthesis. Combinational and Sequential Circuit **Synthesis:** Technology mapping for logic circuits- gate-level implementation and library binding, Sequential synthesis: retiming, state assignment, and pipelining, Optimizing area, power, and delay constraints.

Module II

Optimization Techniques: Logic optimization: minimization, don't-care conditions, and factoring, Power optimization: clock gating, power gating, and low-power techniques, Timing optimization: static timing analysis, critical path balancing. Advanced Topics and Tools: High-level synthesis (HLS): behavioral optimization and scheduling, **Emerging trends:** machine learning in synthesis, 3D IC optimization, and physical design considerations.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Understand the various logical synthesis	Understand
CO 2: Apply synthesis techniques to realize netlist for digital	Apply
circuits	
CO 3: Apply optimization techniques to enhance the	Apply
performance of digital circuits	
CO 4: Apply high level synthesis techniques to design digital	Apply
ICs	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	3
CO3	3	-	-	-	-	1	1	-	-	-	-	-	3	3
CO4	3	-	-	-	-	-	-	-	-	-	-	-	3	3

High = 3, Medium = 2, Low = 1

22 Hours

Text Books

T1:""Logic Synthesis and Verification" by Gary D. Hachtel and Fabio Somenzi , 1996 T2:"VLSI Physical Design Automation" by Sadiq M. Sait and Habib Youssef, 1995 T3:"Principles of CMOS VLSI Design: A Systems Perspective" by Neil H.E. Weste and David Harris

Reference Books

R1:"High-Level Synthesis: Introduction to Chip and System Design" by Michael Fingeroff, 2010

R2:"Modern VLSI Design: IP-Based Design" by Wayne Wolf, 2008

R3:"Digital Integrated Circuits: A Design Perspective" by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, 2003

R4:"Computer-Aided Logical Design witsh Emphasis on VLSI" by Frederick J. Hill and Gerald R. Peterson, 1993

- 1. IEEE Xplore Digital Library
- 2. Semiconductor Engineering Articles

Course code: 23EVE018	Course Title: I IP core design and protection				
Course Category: Major		Course level : Higher / Advanced			
L:T:P(Hours/Week)3: 0: 0	Credits:3	Total C	ontact Hours:45	Max Marks:100	

The course is intended to equip students with a knowledge in IP core design, apply IP core protection, and improve security and reliability in IP cores.

Module 1

Introduction to IP Cores: Overview of IP cores: definition, types, and role in system-onchip (SoC) design, Design flow for creating IP cores: specifications, architecture, and integration, Key considerations: area, power, performance, and reusability. **IP Core Design Techniques:** Standardization and modular design: reusable building blocks, Design abstraction levels: RTL, behavioural, and structural, Verification strategies for IP cores: functional verification, simulation, and test benches.

Module II

IP Core Protection Mechanisms: Methods of IP protection: encryption, watermarking, and obfuscation, Legal protection: licensing models, patents, and copyrights, Counterfeit and piracy prevention in IP core designs. **Security and Reliability in IP Cores:** Techniques for securing IPs against reverse engineering and tampering, Hardware Trojan detection and prevention, Reliability and fault tolerance in IP cores for critical applications.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Explain the IP core design flow.	Understand
CO 2: Utilize IP core design techniques to develop systems	Apply
CO 3: Apply protection mechanisms for IP cores	Apply
CO 4: Apply techniques to improve security and reliability in	Apply
IP cores	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	3
CO3	3	-	-	-	-	-	-	-	-	-	-	-	3	3
CO4	3	-	-	-	-	-	-	-	-	-	-	-	3	3

High = 3, Medium = 2, Low = 1

Text Books:

T1:"IP Core Design and Verification" by Laung-Terng Wang, Yung-Yu Chuang T2:"Designing SoCs with Configured IPs" by Ricardo Reis

23 Hours

T3:"Digital Design and Computer Architecture: ARM Edition" by Sarah Harris and David Harris, 2015.

Reference Books

R1:"The Art of IP Protection: Hardware and Software Solutions" by Steven H. Voldman, 2005.

R2:"Design for Trustworthy Software: Tools, Techniques, and Methodology for Development" by Daniel W. H. Bowers

R3:"Practical Cryptography for Developers" by Svetlin Nakov, Dimitar Kirov

R4:"Hardware Security: Design, Threats, and Safeguards" by Jason G. R. S. De Lemos and Eduardo L. V. L. P, 2014.

- 1. IEEE Xplore Digital Library
- 2. Semiconductor Engineering Articles

Course code: 23EVE019	Course	Course Title: Electronics Packaging				
Course Category: Major			Course level : High	er / Advanced		
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100		

This course provides an overview of electronic packaging technologies, materials, and techniques used in assembling and protecting electronic components and systems. It emphasizes thermal management, reliability, and advanced packaging solutions to meet modern performance and miniaturization demands.

Module 1

22 Hours

Introduction to Electronic Packaging: Packaging levels (chip-level, board-level, and system-level) - Packaging Materials: Properties of packaging materials- thermal, mechanical, and electrical - Substrates, adhesives, and encapsulants, Interconnection Technologies: Wire bonding, flip-chip, and Through-Silicon Via (TSV) technologies - Soldering and surface mount technology (SMT), Failure Mechanisms and Reliability: Thermal, mechanical, and environmental stresses - sTesting and reliability analysis Module II

Advanced Packaging Techniques: 3D packaging and chip stacking - System-in-Package (SiP) and Package-on-Package (PoP), **High-Speed Packaging Design:** Signal integrity and power integrity in high-speed systems - Electromagnetic interference (EMI) considerations, **Future Trends in Packaging:** Photonic packaging, MEMS packaging.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO 1: Understand the fundamental concepts, materials, and	Understand
techniques used in electronic packaging.	
CO 2: Apply thermal management and reliability analysis	Apply
techniques to enhance packaging performance.	
CO 3: Analyse advanced packaging solutions to address	Analyze
challenges in modern electronics.	

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	3
CO3	-	3	-	-	-	-	-	-	-	-	-	-	3	3

High = 3, Medium = 2, Low = 1

Text Books:

T1:Tummala Rao, Fundamentals of Microsystems Packaging. 2001.

T2:Blackwell, *Electronic Packaging and Interconnection Handbook*. 2000.

Reference Books

R1:Charles A. Harper, *Electronic Packaging and Interconnection Technologies*. 1991. R2:Glenn R. Blackwell, *High-Performance Integrated Circuit Packaging*. 1999.

- 1. IEEE Xplore Digital Library
- 2. Articles on Advanced Packaging and System Design

Course code: 23EVE020	Course Title: Thin Film Characterization							
Course Category: Major			Course level : Higher / Advanced					
L:T:P(Hours/Week)3: 0: 0	Credits:3	Tota	I Contact Hours:45	Max Marks:100				

The course is intended to equip students with a knowledge in basics of thin film characterization, conventional and advanced techniques used.

Module 1

Introduction to Thin Films: Definition, types, and deposition techniques - CVD, sputtering, evaporation, Key applications of thin films in electronics, optics, and coatings, Importance of characterizing thin films for quality control. Basic Characterization Techniques: Surface Morphology: Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), Structure Analysis: X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Thickness Measurement: Ellipsometry, Spectroscopic Reflectance.

Module II

Optical Properties: Measurement of refractive index, optical bandgap, and reflectance. Techniques: Spectroscopic Ellipsometry and Reflectance/Transmittance methods. Electrical and Mechanical Properties: Electrical Testing: Four-Point Probe, Hall Effect, and Van der Pauw methods. Mechanical Testing: Hardness, adhesion, stress measurements. Reliability Testing: Thermal cycling and environmental testing.

Course Outcomes	Cognitive Level		
At the end of this course, students will be able to:			
CO 1: Understand the basic thin film characterization	Understand		
techniques			
CO 2: Understand the optical parameters in characterization.	Understand		
CO 3: Arrive at electrical and mechanical characteristics .	Apply		

Course Articulation Matrix

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO2	-	-	-	-	-	-	-	-	-	-	-	-	2	2
CO3	3	-	-	-	-	-	-	-	-	-	-	-	3	3

High = 3, Medium = 2, Low = 1

23 Hours

Text Book

T1: "Thin Film Materials: Synthesis, Characterization, and Applications" by G.C. Cates

T2: "Characterization of Materials" by Elton N. Kaufmann, 2003.

Reference Books

R1:"Thin Film Deposition: Principles and Practice" by Donald L. Smith, 1994

R2:"Thin Films: Their Physics and Applications" by R. F. Bunshah,

- 1. IEEE Xplore Digital Library
- 2. Articles on Advanced Packaging and System Design