

(A DIVISION OF NIA EDUCATIONAL INSTITUTIONS)

Cycle 3 (2023-2030) The Highest Grade

Curriculum and Syllabi

M.E. Structural Engineering

Semesters I & II

Regulations 2024

Programme: M.E. STRUCTURAL ENGINEERING

Curriculum and Syllabi: Semesters - I & II

Recommended by Board of Studies on

Approved by Academic Council on

Action	Responsibility	Signature of Authorized Signatory
Designed and Developed by	BoS Civil Engineering	
Compiled by	Office of the Controller of Examinations	
Approved by	Principal	

Dr. Mahalingam College of Engineering and Technology Department of Civil Engineering

Vision

To develop Competent Civil Engineers to meet the infrastructure challenges of India and the world.

Mission

- To become one of the reputed departments offering Civil Engineering Program in the country.
- To produce excellent engineers to cope up with the changes through dynamic, innovative, and flexible curriculum.
- To provide a conducive environment for teaching & learning and to develop leaders with effective communication skills.
- To conduct quality research driven by industry & societal needs and provide affordable engineering solutions in an ethical way.

Programme: M.E. Structural Engineering

Programme Educational Objectives (PEOs) - Regulation 2024

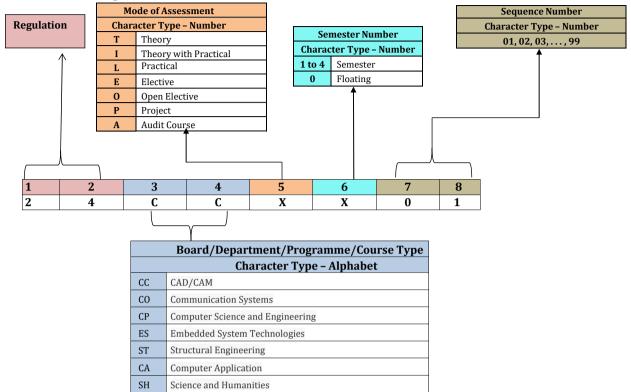
After completion of the programme the graduates will be able to:

PEO.1 Effectively demonstrate engineering knowledge, problem solving skill, design capabilities and entrepreneurial skills by providing practical solutions.

PEO.2 Effectively demonstrate professionalism in multi-disciplinary engineering environment, leadership quality, teamwork and engage in life-long learning.

Programme Outcomes (POs) - Regulations 2024

On successful completion of the programme the graduates will be able to:


PO1. Solve engineering problems after evaluating a wide range of potential solutions for those problems and arrive at feasible, optimal solutions with due consideration for public health, safety, cultural, societal and environmental factors.

PO2. Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data.

PO3. Communicate with the engineering community and with society at large, regarding complex engineering activities by being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, and making effective presentations.

PO4. Use engineering, management and IT tools for prediction and modeling of complex engineering activities with an understanding of the limitations.

Dr. Mahalingam College of Technology, Pollachi 2024 Regulations - Course Code Generation Procedure for PG Courses

An Autonomous Institution Since 2011. Approved by AICTE / Affiliated to Anna University. Accredited by NAAC with 'A++' Grade. Tier-1* - Accredited by NBA. Part of NIA Educational Institution

Dr.Mahalingam College of Engineering and Technology, Pollachi Department of CIVIL ENGINEERING M.E. STRUCTURAL ENGINEERING 2024 Regulation – Curriculum for Semesters I to IV Semester I

Course			ours/V	leek			Common to
Code	Course Title	Course Title L T P		Credits	Marks	Programme s	
24MAT104	Applied Mathematics for Structural Engineers	3	0	0	3	100	-
24STT101	Theory of Elasticity and Plasticity		0	0	3	100	-
24STT102	Structural Dynamics	3	0	0	3	100	-
24XXXXX	PE-I	3	0	0	3	100	-
24CCT101	Research Methodology and IPR	3	0	0	3	100	All
24STL101	Structural Engineering Laboratory	0	0	6	3	100	-
24SHA101	English for Research Paper Writing(Audit Course)		0	0	-	100	All
	Total				18		

Semester II

Course	Course Title	He	ours/W	eek	Credits	Marks	Common to
Code	Course Title	L	Т	Р	Credits	Marks	Programmes
24STT201	Design of Advanced Reinforced Concrete Structures	3	0	0	3	100	-
24STT202	Finite Element Analysis in Structural Engineering	3	0	0	3	100	-
24STT203	Design of Advanced Steel Structures	3	0	0	3	100	-
24XXXX	PE-II		0	0	3	100	-
24XXXX	PE– III	3	0	0	3	100	-
24STL201	Design Studio	0	0	6	3	100	-
24STL202	Research Paper seminar	0	0	2	1	100	-
24SHA201	Teaching and Learning in Engineering		0	4	-	100	-
	Total				19		

Course			urs/We	ek	Credits	Marks	Common to
Code	Course Title	L	Т	Р	Credits	Ivial KS	Programmes
24XXXX	PE–III	3	0	0	3	100	-
24XXXX	PE–IV	3	0	0	3	100	-
24XXXX	Open Elective/Online Course	3	0	0	3	100	
24STP301	Project – I	0	0	20	10	200	-
	Total				19		

Semester III

Semester IV

Course	Hours/Week Credit L T P		ours/We	eek	Cradita	Marks	Common to	
Code			Credits	IVIA 1K5	Programmes			
24STP401	Project – II	0	0	32	16	400	-	
	Total	0	0	32	16	400		

Total Credits: 72

Professional Electives

Course		Но	urs/We	ek	Credits	Marks
Code	Course Title	L	Т	Р	Greans	iviai K5
24STE001	Advanced Concrete Technology	3	0	0	3	100
24STE002	Health Monitoring of Structures	3	0	0	3	100
24STE003	Fracture Mechanism in Concrete Structures	3	0	0	3	100
24STE004	Structural Optimization	3	0	0	3	100
24STE005	Structural Stability	3	0	0	3	100
24STE006	Advanced Composite Materials for Structures	3	0	0	3	100
24STE007	Design of Off-Shore Structures	3	0	0	3	100
24STE008	Theory of Plates and shells	3	0	0	3	100
24STE009	Disaster Mitigation and Management	3	0	0	3	100
24STE010	Green Building Technology	3	0	0	3	100
24STE011	Retrofitting and Rehabilitation of Structures	3	0	0	3	100
24STE012	Design of Industrial Structures	3	0	0	3	100
24STE013	Design of Bridges	3	0	0	3	100
24STE014	Design of Sub-Structures		0	0	3	100
24STE015	Earthquake Resistant Structures	3	0	0	3	100
24STE016	Prefabricated Structures	3	0	0	3	100

SEMESTER I

Course Code: 24MA	.T104	Course Title: Applied Mathemat Engineers	ics for S	tructural
Course Category: Foundation Course		Course Level: Introduct	tory	
L:T:P(Hours/Week) 3:0:0	Credits: 3	Total Contact Hours:	Max Marks: 100	
Course Objectives:				
The course is intende	ed to:			
1. Solve the variation	al problems w	ith boundary conditions.		
2. Solve the system of	of linear equati	ons and apply numerical techniqu	es to eva	luate
integrals.				
3. Identify and solve e	engineering pr	oblems by applying the knowledge	e of partia	d
differential equations.				
4. Interpret the notion	of sampling c	listributions and statistical technique	ues used	in
engineering problems	S.			
5. Explain the system	atic problem s	olving techniques using design of	experime	ents.
Module I				22 Hours
Variational approacl	h and Solutio	n to set of Equations		
Variation and its prop	erties –Euler's	s equation – Functionals depender	nt on first	and higher
order derivatives - Fu	nctionals depe	endent on functions of several inde	ependent	variables –
Rayleigh Ritz method	- Galerkin me	thod.		
Solving the set of equ	ations, Chole	ski method, Iterative methods, Rel	axation m	nethod,
Trapezoidal rule, Sim	pson's rules, (Gaussian quadrature, Examples.		
Solution to Higher C	Order Partial I	Differential Equations		
Second order linear e	equations and	their classification, Initial and bour	ndary con	ditions,
DAlembert's solution	of the wave e	quation. Separation of variables m	ethod to s	simple problems
Module II				23 Hours
Testing of Hypothes	ses and Desig	In of Experiments		I
Statistical hypothesis	, Large samp	le test based on Normal distribu	tion for s	single mean and
difference of means,	Tests based of	on t, Chi-square and F distributior	ns for mea	an, variance and
proportion, Contingen	ncy table (test	for independent), Goodness of fit.		
Aim of Design of Expe	eriments-Basi	c Principles of Experimental Desig	n-Comple	etely
Randomized Design ((CRD)-Analysi	is of Variance (AVOVA) - Random	ized Desi	ign (RBD)-Latin
Square Design(LSD)-	-Comparison o	of RBD and LSD.		
Course Outcomes			Cor	gnitive Level
At the end of this cou	rse, students	will be able to:		
CO1: Solve the set numerical method	of equations	using variational method and		Apply

Apply						
Apply						
R1. T.Veerarajan, "Probability, Statistics and Random Process", 3rd Edition, Tata McGrawHill,						
New Delhi,2017						
Edition), , John Wiley						
erical Analysis", Seventh						
Edition, Pearson, New Delhi, 2007						
R3. R4. P.Kandasamy,K.Thilagavathy, K.Gunavathy, "Numerical Methods" S.CHAND, Latest						

Course Code: 24STT	Course Code: 24STT101		Irse Title: THEORY OF ELA PLASTICITY	STICITY	AND			
Course Category: Pr Core	Course Category: Professional Core		Course Level: Mastery					
L:T:P(Hours/Week) 3:0:0	Credits:3		Total Contact Hours:45 Max Marks: 100		rks: 100			
Course Objectives: The course is indente	Course Objectives: The course is indented to impart knowledge on the concepts of stress and strain in cartesian							
	•		theorems and plastic analysis					
Module I					25 Hours			
Basic concepts of defe	ormation of de	eforr	nable bodies- Notations of str	ess and s	train in a 3D field			
Transformations of st	resses and st	train	s in Cartesian and polar co-	ordinates-	Equilibrium and			
compatibility equation	s in two and t	hree	e dimensions in Cartesian co	-ordinates	i.			
Plane stress and plan	e strain probl	ems	- Two dimensional problems	in Cartes	sian co-ordinates			
as applied in beam b	ending, using	g Ai	ry's stress function - Polar c	co-ordinate	es. Equations of			
equilibrium and co	mpatibility-two	o d	limensional problems in p	olar co-	ordinates-Stress			
concentration in holes	6.							
Module II					20 Hours			
Energy principle -theo	prem of minim	um	potential energy and compler	mentary p	otential energy			
Torsion of various sha	ped bars- Pra	andtl	's membrane analogy- energy	y method-	Torsion of rolled			
Profiles- Stress conce	entration at re-	-ent	rant corners.					
Introduction, yield crit	teria for meta	uls, g	graphical representation of y	ield criter	ia, Flow laws of			
plastic mass, Plastic strain relations-Application to thick cylinders - Hollow spheres -Torsion.								
Course Outcomes	Course Outcomes Cognitive Level							
At the end of this cour								
CO1: Solve the 2E coordinates.) problems	in	the cartesian and polar		Apply			
			energy principles, torsional analysis.		Apply			

REFERENCE BOOK:

R1.Timoshenko S P and Goodier J N, "Theory of Elasticity", Third edition, McGraw Hill Education, 2017.

R2. Jane Helena H, "Theory of Elasticity and Plasticity", First Edition, PHI Learning, New Delhi, 2017

R3. Chandramouli P N, "Theory of Elasticity", First Edition, Yes Dee Publications, 2017.

Course Code: 24STT	102	Cou	urse Title: Structural Dynamics					
Course Category: Professional Core			Course Level: Mas	Course Level: Mastery				
L:T:P(Hours/Week) 3:0:0	ek) Credits: 3		Total Contact Hours:	Max Ma	arks: 100			
Course Objectives:								
The objective of this of	ourse is to	make	students to learn principles	of Structur	ral Dynamics, To			
implement these princ	iples throug	gh diffe	erent methods and to apply th	he same fo	or free and forced			
vibration of structures	. To evalua	ite the	dynamic characteristics of the	he structur	es			
Module I					22 Hours			
Introduction: Objecti	ves - Impoi	rtance	of vibration analysis - Nature	e of excitin	g forces - Basic			
terminology related to vibration – natural frequency - natural period, resonance etc, - Dynamic								
	degree of freedom - Assumption to reduce dynamic DoF - Mathematical modeling of dynamic							
	ssumption	to red	duce dynamic DoF - Mathem	natical mod	leling of dynamic			
	ssumption	to red	duce dynamic DoF - Mathem	atical mod	leling of dynamic			
degree of freedom - A systems.			duce dynamic DoF - Mathem Free and forced vibration v					
degree of freedom - A systems. Single Degree of Fre	eedom Sy	stem:		vith and w	ithout damping -			
degree of freedom - A systems. Single Degree of Fre Response to Harmon	eedom Sy nic Loading	stem: g - Re	Free and forced vibration v	vith and w c loading ເ	ithout damping - using Duhamel's			
degree of freedom - A systems. Single Degree of Fre Response to Harmon	eedom System nic Loading colution of re	stem: g - Re	Free and forced vibration v esponse to general dynamic	vith and w c loading ເ	ithout damping - using Duhamel's			
degree of freedom - A systems. Single Degree of Fre Response to Harmon integral - Numerical se	eedom System nic Loading colution of re	stem: g - Re	Free and forced vibration v esponse to general dynamic	vith and w c loading ເ	ithout damping - using Duhamel's			
degree of freedom - A systems. Single Degree of Fre Response to Harmor integral - Numerical se Concept of response se Module II	eedom System nic Loading olution of re spectrum.	stem: g - Re espons	Free and forced vibration v esponse to general dynamic	vith and w c loading ເ & Direct Ir	ithout damping - using Duhamel's ntegration, 23 Hours			
degree of freedom - A systems. Single Degree of Fre Response to Harmor integral - Numerical se Concept of response se Module II Multiple Degree of F	eedom System nic Loading olution of re spectrum. reedom Sy	stem: g - Re espons	Free and forced vibration v esponse to general dynamic se using Newmark's method	vith and w c loading u & Direct Ir	ithout damping - using Duhamel's ntegration, 23 Hours d un-symmetrical			
degree of freedom - A systems. Single Degree of Free Response to Harmon integral - Numerical se Concept of response se Module II Multiple Degree of Free structures in plan - Na	eedom System nic Loading olution of re spectrum. reedom System	stem: g - Re espons vstem: encies	Free and forced vibration vesponse to general dynamic se using Newmark's method	vith and w c loading u & Direct Ir netrical and ng system,	ithout damping - using Duhamel's ntegration, 23 Hours d un-symmetrical Orthogonality of			
degree of freedom - A systems. Single Degree of Free Response to Harmon integral - Numerical se Concept of response se Module II Multiple Degree of F structures in plan - Na modes - Dynamic res	eedom System nic Loading olution of re spectrum. reedom Sy atural freque ponse by N	stem: g - Re espons vstem: encies vodal	Free and forced vibration vesponse to general dynamic se using Newmark's method Equation of motion of symmetric and mode shapes of vibratir	with and w c loading u & Direct Ir netrical and ng system, sponse Sp	ithout damping - using Duhamel's ntegration, 23 Hours d un-symmetrical Orthogonality of ectrum Analysis,			
degree of freedom - A systems. Single Degree of Free Response to Harmon integral - Numerical se Concept of response se Module II Multiple Degree of Free structures in plan - Na modes - Dynamic ress Missing mass correct	eedom System nic Loading olution of re spectrum. reedom Sy tural freque ponse by N ion - Introd	stem: g - Re espons vstem: encies vlodal luction	Free and forced vibration v esponse to general dynamic se using Newmark's method E Equation of motion of symm and mode shapes of vibratin Superposition Method - Res to multiple degree of freede	with and w c loading t & Direct Ir netrical and ng system, sponse Sp om system	ithout damping - using Duhamel's ntegration, 23 Hours d un-symmetrical Orthogonality of ectrum Analysis,			
degree of freedom - A systems. Single Degree of Free Response to Harmon integral - Numerical se Concept of response se Module II Multiple Degree of Free structures in plan - Na modes - Dynamic ress Missing mass correct mass and loading - Ge	eedom System nic Loading olution of re spectrum. reedom Sy tural freque ponse by N ion - Introd eneralized	stem: g - Re espons vstem: encies vlodal luction Single	Free and forced vibration v esponse to general dynamic se using Newmark's method E Equation of motion of symm and mode shapes of vibratin Superposition Method - Res to multiple degree of freedo Degree of Freedom System	with and w c loading t & Direct Ir netrical and ng system, sponse Sp om system	ithout damping - using Duhamel's ntegration, 23 Hours d un-symmetrical Orthogonality of ectrum Analysis,			
degree of freedom - A systems. Single Degree of Free Response to Harmor integral - Numerical se Concept of response se Module II Multiple Degree of Free structures in plan - Na modes - Dynamic ress Missing mass correct mass and loading - Ge Special Topics in Structures	eedom Systemic Loading olution of respectrum. reedom Systematural freque ponse by N ion - Introd eneralized ructural Dy	stem: g - Re espons vstem: encies vodal luction Single ynamic	Free and forced vibration v esponse to general dynamic se using Newmark's method E Equation of motion of symm and mode shapes of vibratin Superposition Method - Res to multiple degree of freedo Degree of Freedom System	with and w c loading t & Direct In netrical and ng system, sponse Sp om system	ithout damping - using Duhamel's ntegration, 23 Hours d un-symmetrical Orthogonality of ectrum Analysis, n with distributed			

Course Outcomes	Cognitive Level					
At the end of this course, students will be able to:	oogintive Level					
CO 1: Apply the concepts of vibration analysis.	Apply					
CO 2: Apply and Interpret dynamics response of single degree freedom system using fundamental theory and experiments.	Apply					
CO 3: Apply dynamic analysis of system/structures with Multi degrees of freedom under free and forced vibration.	Apply					
Text Book(s):						
T1. Anil K.Chopra, Dynamics of Structures, Fifth edition, Pearson Education, 2020.						
T2. Mario Paz, Structural Dynamics -Theory and Computation, Kluwe	r Academic Publishers,					
Fifth Edition, 2006.						

Reference Book(s):

R1. Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley & Sons, 2011.

R2. Madhujit Mukhopadhyay," Structural Dynamics: Vibrations and Systems", Ane's Student Edition,2017

Course Code: 24CCT101		Course Title: RESEARCH METHODOLOGY AND IPR		
Course Category: Professional Core		Course Level: Introductory		
L:T:P(Hours/Week) 3: 0: 0	Credits: 3	Total Contact Hours: 45	Max Marks:100	

The course is intended to describe the attitude measurements, scales and sampling methods and to apply hypotheses testing in research problem. Elucidate the research report writing and presentation effectively to encourage applying for patent and copyrighting for their innovative works.

MODULE I 22 Hours

OVERVIEW OF RESEARCH METHODOLOGY

Research methodology – definition, mathematical tools for analysis, Types of research, exploratory research, conclusive research, modeling research, algorithmic research, Research process Data collection methods- Primary data – observation method, personal interview, telephonic interview, mail survey, questionnaire design. Secondary data- internal sources ofdata, external sources of data.

ATTITUDE MEASUREMENTS, SCALES AND SAMPLING METHODS

Scales – measurement, Types of scale – Thurstone's Case V scale model, Osgood's SemanticDifferential scale, Likert scale, Q- sort scale. Sampling methods- Probability sampling methods

– simple random sampling with replacement, simple random sampling without replacement, stratified, sampling, cluster sampling. Non- probability sampling method– convenience. MODULE II
 23

Hours

HYPOTHESES TESTING

Hypotheses testing – Testing of hypotheses concerning means (one mean and differencebetween two means -one tailed and two tailed tests).

REPORT WRITING AND PRESENTATION

Report writing- Types of report, guidelines to review report, typing instructions, oral presentation.

PATENTING

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting andDevelopment: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Course Outcomes	Cognitive
At the end of the course students will able to	Level
CO1: Apply the attitude measurements, scales and sampling methods	Apply
CO2: Apply hypotheses testing in research problem.	Apply
CO3: Apply the patent and copyright for their innovative works	Apply
Reference Book(s):	
R1. Panneerselvam, R., Research Methodology, Prentice-Hall of India,	New Delhi, 2004.
R2. Kumar, Ranjit, , "Research Methodology: A Step by Step Guide for be London. Sage: Publications, 2005.	ginners",
R3. Halbert, "Resisting Intellectual Property", Taylor & Francis Publication	s,2007.
R4. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Pr NewTechnological Age", Clause 8 Publishing,2016.	operty in
R5. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand Put	olications, 2008.

L

Course Code: 24SHA	ode: 24SHA101 Course Title: ENGLISH FOR RESEARCH PAPE WRITING (Common to all PG Programme)		
Course Category :Humanities		Course Level : Introductory	
L:T:P(Hours/Week) Credits: 2:0:0 -		Total Contact Hours: 30	Max Marks : 100

The course is intended to enhance the language skills concerning research paper writing and to explain the crucial role of technology in enhancing the quality and credibility of research.

Module I

15 hours

Foundations of Academic English in Research: Academic English - Key Language Aspects - Clarity and Precision - Objectivity - Formal Tone - Integrating References.

Effective Writing Style for Research Papers: Word Order - Sentences and Paragraphs - Link Words for Cohesion - Avoiding Redundancy / Repetition - Breaking up long sentences - Paraphrasing Skills.

Advanced Reading and Research Vocabulary Development: Critical Reading Strategies - Analysing Research Articles - Identifying Arguments - Evaluating Findings -Formulaic Expressions - Academic Phrase Bank - Discipline-Specific Vocabulary -Commonly Misused Words.

Module II

15 hours

Presentation Language Skills: Written vs. Spoken English - Dynamic Vocabulary for Presentations -Expressive Language for Audience Engagement- Language for Clear and Impactful Slides - Adapting Language Style to Different Audiences.

Grammar Refinement for Research Writing: Advanced Punctuation Usage- Proper Use of Modifiers - Avoiding Ambiguous Pronoun References - Verb Tense Consistency - Conditional Sentences.

Technology and Language for Research: Technology and Role of Al in Research Writing - Citations and References - Plagiarism and Ethical Considerations - Tools and Awareness - Fair Practices. Course OutcomesAt the end of the course the student will be able to :	Cognitive Level
CO 1: Enhance their English Language Skills concerning research paper writing	Understand
CO 2: Develop a comprehensive set of linguistic skills essential for academic research.	Apply
CO 3: Produce well-structured research papers using a variety of research and presentation technologies.	Apply

Reference Book(s):

R1: Craswell, G. 2004. Writing for Academic Success. Sage Publications. Springer, New York

R2: Wallwork, Adrian. 2015. English for Academic Research: Grammar, Usage and Style

R3: Swales, J. & amp; C. Feak. 2012. Academic Writing for Graduate Students: Essential Skills

and Tasks. Michigan University Press.

R4: ---2011. English for Writing Research Papers, Springer, New York.

Web References:

- 1. https://tiramisutes.github.io/images/PDF/English+for+Writing+Research+Papers. pdf
- 2. https://libguides.usc.edu/writingguide/grammar
- 3. https://onlinecourses.swayam2.ac.in/ntr24_ed15/preview.

Course Code: 24STL101	Course Title: STRUCTURAL ENGINEERING LABORATORY			
Course Category Core	r: Professional Course Level: Practice			
L:T:P(Hours/Wee 0: 0: 4	k) Credits:2	Total Contact Hours: 60	Max Marks:100	

The course is intended to determine properties of the concrete specimens for NDT, behavior of structural members, effect of concrete and steel beam for flexure and for shear and buckling of the concrete column.

LIST OF EXPERIMENTS:

- 1. Demonstrations to instrumentation (LVDT, Load cell, Hydraulic jack, Strain gauges)
- 2. Testing of constitutive behavior of steel, aluminum and wood specimens
- 3. Casting and Testing of Simply Supported Reinforced Concrete beams for Flexure and Shear
- 4. Casting and Testing of Reinforced Concrete Columns for Buckling Behavior
- 5. Testing of Simply Supported Steel beams for Flexure and Shear
- 6. Non-destructive testing of concrete (a) Rebound hammer (b) Impact-Echo method and
 - (c) Ultrasonic pulse velocity.

Course Outcomes	Cognitive
At the end of this course, student will be able to:	Level
CO.1. Determine properties of the concrete specimens for NDT	Apply
CO.2. Determine the behavior of structural members	Apply
CO.3. Determine the effect of concrete and steel beam for flexure and	Apply
for shear.	
CO.4. Determine the concrete column for buckling	Apply

Reference (s):

- R1. A.R. Santhakumar, Concrete Technology, Oxford University Press, 2007, New Delhi
- R2. Relevant BIS Codes of practice for mix design, rebar testing, concrete design etc.
- R3. Structural Engineering Laboratory Manual of Civil Engineering Department, MCET, 2019.

SEMESTER II

	Course Title: Design of Advanced Concrete Structures				
Course Category: Core		Course Level: Mastery			
L:T:P(Hours/Week) 3:0:0 Credits: 3		Total Co	ontact Hours:45	Max Ma	rks: 100
Course Objectives: The course is indent	ted to impart	knowledge o	on the concepts	of design of	basic concrete
elements, walls, flat sl	lab, frames and	d inelastic be	haviour of structu	ires.	
Module I					25 Hours
crack width as per IS Design and detailing R.C. frames: prelimina by gravity loading-por Classification and des deep beams - Checkin	of continuous ary design-use tal and cantilev sign principles	of substitute ver methods f of R.C. Wall	frames for calcul for lateral loads -c and Shear wall,	ating stress ro detailing of re Design of cu	esultants caused inforcements.
Module II					
					20 Hours
Design of flat slab- Hil floors-detailing of rein Inelastic behaviour of redistribution in contin for ductility, durability	forcements. f concrete bea uous beams- [ms and Bak Design of cas	er's method -mo	ment-rotation	n- Design of grid
floors-detailing of rein Inelastic behaviour of redistribution in contin	forcements. f concrete bea uous beams- [ms and Bak Design of cas	er's method -mo	ment-rotation	n- Design of grid curves-moment ing requirements Cognitive
floors-detailing of rein Inelastic behaviour of redistribution in contin for ductility, durability	forcements. f concrete bea nuous beams- E and fire resista	ms and Bak Design of cas Ince.	er's method -mo t-in-situ joints in f	ment-rotation	n- Design of grid curves-moment ing requirements
floors-detailing of rein Inelastic behaviour of redistribution in contin for ductility, durability Course Outcomes	forcements. f concrete bea uous beams- I and fire resista rse, students w ail RCC beams	ms and Bak Design of cas ince. ill be able to:	er's method -mo t-in-situ joints in f	ment-rotation rames. Detail	n- Design of grid curves-moment ing requirements Cognitive
floors-detailing of rein Inelastic behaviour of redistribution in contin for ductility, durability Course Outcomes At the end of this cour CO1: Design and deta using limit state metho CO2: Design and deta of concrete beams usi	forcements. f concrete bea uous beams- I and fire resista se, students w ail RCC beams od. ail grid floor, fla	ms and Bak Design of cas ince. ill be able to: s, columns, f	er's method -mo t-in-situ joints in f rames, and speci	ment-rotation rames. Detail al elements	n- Design of grid curves-moment ing requirements Cognitive Level Analyze
floors-detailing of rein Inelastic behaviour of redistribution in contin for ductility, durability Course Outcomes At the end of this cour CO1: Design and deta using limit state metho CO2: Design and deta of concrete beams usi Reference Book(s):	forcements. f concrete bea nuous beams- I and fire resista rse, students w ail RCC beams od. ail grid floor, fla ing IS codes.	ms and Bak Design of cas ince. ill be able to: s, columns, f t slab and de	er's method -mo t-in-situ joints in f rames, and speci	ment-rotation rames. Detail al elements stic behaviour	n- Design of gric curves-moment ing requirements Cognitive Level Analyze r Analyze
floors-detailing of rein Inelastic behaviour of redistribution in contin for ductility, durability Course Outcomes At the end of this cour CO1: Design and deta using limit state metho CO2: Design and deta of concrete beams usi	forcements. f concrete bea auous beams- I and fire resista rse, students w ail RCC beams od. ail grid floor, fla ing IS codes.	ms and Bak Design of cas ince. ill be able to: s, columns, f t slab and de as Menon, I	er's method -mo t-in-situ joints in f rames, and speci termine the inelas	ment-rotation rames. Detail al elements stic behaviour	n- Design of gric curves-moment ing requirements Cognitive Level Analyze r Analyze

Course Code: 24STT202		Course Title: FINITE ELEMENT					
Course Category: Core		Course Level: Mastery					
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours: 45	Max Marks: 100				
Course Objectives:							
The course aims to impart	The course aims to impart the knowledge on various finite element concepts, analyzing one						
and two dimensional solid	s, framed stru	ctures, plates and shells.					
Module I			23 Hours				
APPROXIMATE SOLUTI	ONS AND FIN	ITE ELEMENT CONCEPTS					
Approximate solutions of	ⁱ boundary va	alue problems - Methods of weig	hted residuals,				
approximate solution usin	g variational r	nethod and Modified Galerkin meth	od - continuity,				
compatibility, convergenc	e aspects - F	Finite element concepts - Genera	finite element				
solution procedure, Finite	element equa	tions using modified Galerkin metho	od.				
ELEMENT PROPERTIES							
Natural Coordinates - T	riangular Ele	ments -Rectangular Elements -	Lagrange and				
Serendipity Elements -So	olid Elements	- Isoparametric Formulation - Stif	fness Matrix of				
Isoparametric Elements.							
ANALYSIS OF TWO AND	D THREE-DIM	ENSIONAL SOLIDS					
Constant Strain Triangle	- Linear Stra	ain Triangle - Rectangular Eleme	nts- Numerical				
Evaluation of Element St	iffness - Com	putation of Stresses, Geometric N	Ionlinearity and				
Static Condensation - Axis	symmetric Ele	ment - Finite Element Formulation of	of Axisymmetric				
Element - Finite Element I	ormulation fo	r 3 Dimensional Elements- Problem	IS				
Module II			22 Hours				
ANALYSIS OF FRAMED	STRUCTURE	S	•				
Stiffness of Truss Membe	r - Analysis of	f Truss -Stiffness of Beam Member	-Finite Element				
Analysis of Continuous Be	eam - Plane Fr	ame Analysis - Analysis of Grid and	d Space Frame.				
ANALYSIS OF PLATES	AND SHELLS	AND DYNAMIC APPLICATIONS					
Finite Element Analysis of	Thin Plate -Fi	nite Element Analysis of Thick Plate	-Finite Element				
Analysis of Skew Plate - Ir	ntroduction to F	Finite Strip Method -Finite Element A	nalysis of Shell				
- Finite Elements for Elastic Stability - Dynamic Analysis - Nonlinear, Vibration and Thermal							
Problems - Meshing and S	Solution Proble	ems.					

Course outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO1 Determine the stresses and strains for 2D and 3D problems using finite element method.	Apply
CO2 Analyze framed structures using finite element method	Analyze
CO3 Analyze the plates and shells using finite element method	Analyze

Text Book(s):

T1. . Desai, Y.M., Eldho, T.L. and Shah, A.H., "Finite Element Method", Pearson Education Asia, New Delhi,2011.

T2. Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2012.

Reference Book(s):

R1. SS. Bhavikkatti, "Introduction to Finite Element Analysis", New Age International Pvt. Ltd.,

New Delhi, 2005.

R2. Singiresu. S. Rao, "The Finite Element Method in Engineering", Butterworth-Heinemann, India Edition, 2010.

Course Code: 24STT203	Course Title: Advanced Design of Steel Structures		
Course Category: Professional Core	Course L	evel: Mastery	
L:T:P(Hours/Week) 3:0:0	Credits: 3	Total Contact Hours: 45	Max Marks: 100

• To study the about the connections, analysis and design of Industrial building elements,

• To study the design of cold formed steel, special structures and plastic analysis of structures.

 Module I
 22 Hours

 DESIGN OF CONNECTIONS: Types of connections – Welded and Bolted – Throat and Root

 Stresses in Fillet Welds – Seated Connections – Unstiffened and Stiffened seated

 Connections – Moment Resistant Connections – Clip angle Connections – Split beam

 Connections – Framed Connections HSFG bolted connections.

 ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS: Structural Configurations

Functional and Serviceability Requirements- Analysis and design of different types of trusses – Analysis and design of industrial buildings – Sway and non-sway frames –Gantry Girders –Earthquake resistant design of steel buildings.

Module II

DESIGN OF LIGHT GAUGE STEEL STRUCTURES: Introduction to Direct Strength Method
Behaviour of Compression Elements - Effective width for load and deflection determination
Behaviour of Unstiffened and Stiffened Elements – Design of webs of beams – Flexural
members – Lateral buckling of beams – Shear Lag – Flange Curling – Design of
Compression Members – Wall Studs.

DESIGN OF SPECIAL STRUCTURES

Micro Wave Towers – Transmission line towers – Loads on towers - Shape, Sag and Tension in Uniformly loaded conductors -Analysis of towers – Design of member in towers – Design of steel water tank - Design of chimney – Design of bunkers and silos.

Cour	Course Outcome				
On completion of the course, the student is expected to be able to					
CO1	Apply design principles as per IS codes for design of different types of	Apply			
	steel connections and industrial structural elements.				
CO2	Apply design principles as per IS codes for design of light gauge steel	Apply			
	structures, special structures and composite members.				

TEXT BOOKS	:
1. Narayanan.	R.et.al., Teaching Resource on Structural steel Design,
2. INSDAG, Mi	nistry of Steel Publishing, 2000.
3. Subramania	n. N, Design of Steel Structures, Oxford University Press, 2016.
4. S.K. Duggal	Limit State Design of Steel Structures, McGraw Hill Book Company, 2017
REFERENCES):
1. L.S.Jayagop	al, D.Tensing, Design of Steel Structures, Vikas Publishing, 2015
2. Dayaratnam	, Design of Steel Structures, S. Chand & Company Ltd.,2012
3. S.Ramchand	and Virendra Gehlot, 'Design of Steel Structures', VolII, Scientific
Publication, Ne	w Delhi,2010.
4. INSDAG, 'Te	eaching Resource for Structural Steel Design', Kolkotta, Version-II
5. Wie Wen Yu	, Design of Cold-Formed Steel Structures, McGraw Hill Book Company,
2019	

Course Code: 24STL	.201	Cou	rse Title: Design Studio	
Course Category: Co	ore	Cou	rse Level: Practice	
L:T:P(Hours/Week) 0:0 :3	Credits: '	1.5	Total Contact Hours: 45	Max Marks: 100

The students will be able to analysis and design various structural elements using software.

List of Exercises:

Analysis of Structures using Software

- 1. Analysis of pin jointed plane trusses.
- 2. Analysis of Rigid jointed plane frames.
- 3. Plane stress analysis of CST and four nodded isoparametric elements.

Design of Reinforced concrete structures using software

- 4. Design and detailing of slabs and beams.
- 5. Design and detailing of short and slender columns.
- 6. Design and detailing of reinforced concrete retaining wall (cantilever type).
- 7. Design and detailing of different types of foundations.

Design of steel structures using software

- 8. Design of steel structural elements (Beams and Columns)
- 9. Design of Purlins and elements of truss.
- 10. Design of steel towers.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1: Analyse the truss, frame and other elements using software.	Analyse
CO2: Analyse and design the various structural components in steel and concrete using software.	Analyse
Reference Book(s):	
R1. Design Studio Laboratory Manual of Civil Engineering Department, MC	CET, Pollachi.
Reference Book(s):	

R1. Design Studio Laboratory Manual of Civil Engineering Department, MCET, Pollachi.

Course Code: 24SH	A201	Course Title: TEACHING AND LEARNING IN ENGINEERING	
		(Common to all P	G Programmes)
Course Category: A	udit Course	Course Level: Introductory	
L:T:P(Hours/Week) 0:0:4	Credits: -	Total Contact Hours: 30	Max Marks:100

The course is intended to impart knowledge on an outcome-based approach,

employing active learning methods in lecture/practical/tutorial sessions.

Assessments will be conducted using rubrics, focusing on higher-order thinking skills.

Module I

15 Hours

Outcome Based Approach

Outcome based Education- Need & Approach- Washington accord-Graduate attributes- Learning outcomes –Blooms Taxonomy.

Active Learning Methods

Design and Delivery plan for lectures/practical/tutorial sessions-Need for Active learning methods-Active learning strategies- Benefits of Active learning Methods.

Module II

15Hours

Assessments

Assessments- types of assessments-need for rubrics, Types of rubrics-Assessment using rubrics.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Use outcome based approach in teaching courses in engineering Programmes.	Apply
CO 2: Conduct lecture/practical/tutorial sessions using active learning methods.	Apply
CO 3: Conduct higher order assessments by using rubrics.	Apply

Reference Book(s):

1. William G. Spady and Francis Aldrine A. Uy (2014). Outcome-Based Education:

Critical Issues and Answers, ISBN: 978-971-0167-41-8, Maxcor Publishing House, Inc.

2. Dr. William G. Spady, WajidHussain, Joan Largo, Dr. Francis Uy (2018). Beyond Outcomes Accreditation: Exploring the Power of 'Real' OBE Practices.

3. Richard M. Felder, Rebecca Brent (2016), Teaching and Learning STEM: A

Practical Guide, John Wiley & Sons Inc.

ELECTIVES

Course Code: 24STE001	Course T	itle: Advanced Concrete Te	echnology
Course Category: Profession	nal Elective	Course Level: Mast	ery
L:T:P(Hours/Week) - 3:0:0 Credits:		Total Contact Hours:45	Max Marks: 100
Course Objectives:			I
To study the properties of ma	aterials in cor	ncrete, mix design, tests, str	ength and durability
properties concrete and also a	bout special c	oncretes.	
Module I			22 Hours
Fundamentals of Concrete:			I
Properties of materials used	in concrete -	- types and properties of a	dmixtures, effects of
admixtures on fresh and har	dened concre	te - measurement of worka	bility by quantitative
empirical methods - concrete	e properties:	setting and hardening - mix	k design for various
concrete.			
Properties of Fresh and Hard	dened Concre	ete:	
Process of manufacturing, tra	ansporting, pla	acing and curing of concret	e. Tests on fresh 8
hardened concrete - elastic be	havior in con	crete - creep, shrinkage and	thermal properties o
concrete - failure modes in cor	ncrete		
Module II			23 Hours
Durability of concrete: Class	sification of ca	auses of concrete deteriorati	on – permeability of
concrete – durability concept: p	oore structure	and transport process - alkali	-aggregate reactivity
assessment of durability prope	erties of concre	ete - non-destructive testing o	of concrete.
Special Concrete:			
Properties and applications of	of Light weigh	t concrete – Polymer conc	rete – Geo polyme
Properties and applications c concrete - Cellular concrete -	• •	•	
	- Aerated & f	oamed concrete - high stre	ngth concrete - high

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Apply knowledge on various materials needed for concrete manufacture and to do mix design as per IS code.	Apply
CO 2: Explain various tests on fresh and hardened concrete to get knowledge on strength and durability properties of concrete.	Apply
CO 3 : Apply knowledge on selection of various special concrete for different structures.	Apply
Reference Book(s):	
1. Gupta.B.L., Amit Gupta, "Concrete Technology, Jain Book Agency, 2017.	
2. Shetty M.S., Concrete Technology, S.Chand and Company Ltd. Delhi, 2019.	
3. Gambhir.M.L., Concrete Technology, McGraw Hill Education, 2006.	
3. Neville, A.M., Properties of Concrete, Prentice Hall, 1995, London.	
4. Job Thomas., Concrete Technology, Cencage learning India Private Ltd, New	Delhi, 2015.

Course Code: 24ST	E002	Course Title: HEALTH MONITORING OF STRUCTURES		
Course Category: Professional Electiv	e		Course Level: Mastery	
L:T:P(Hours/Week) 3:0:0	Credits: 3		Total Contact Hours: 45	Max Marks: 100
Course Objectives:	1		1	1

The course is intended to impart knowledge structural health monitoring for structures and understand the conditional assessment & techniques for strengthening and retrofitting of structures.

Module I

22 Hours

Introduction of Structural Health Monitoring

Need of Structural Health Monitoring – Concept of SHM – SHM & Biomimetic Comparison of SHM with NDT – Types & Components of SHM – Procedure of SHM – Objectives & Operational Evaluations of SHM – Advantages of SHM

Instrumentations & Sensors for SHM

Basics of Instrumentations & Measurements – Classifications – Input-Output Configurations of Instruments – Static & Dynamic Characteristics – Functions. Various Types of Electromechanical, Electronics & Digital Instruments for SHM. Data Acquisition Systems: Types, Hardware & its Components.

Basics of Sensors – Transducers & Actuators – Classification of Sensors – Characteristics & Working Principles of Various Types of Sensors like Strain Gauges – LVDT – Accelerometers Concept of Smart Materials & Smart Structures with SHM – Basics of Smart Materials like Piezoelectric – Shape Memory Alloys – ER & MR Fluids etc

Module II

23 Hours

Methods of SHM :Methodologies and Monitoring Principles – Local & Global Techniques for SHM – Static & Dynamic Field Testing – Short & Long-Term Monitoring – Active & Passive Monitoring. Vibration Based SHM Techniques - Use & Demonstration of Dynamic Properties of Structures for Damage Detection & SHM – Ambient Vibration Test – Acoustic Emission Technique – Electromechanical Impedance Technique – Wave Propagation Based Techniques – Fibre Optics Based Techniques – Remote & Wireless SHM Techniques – IoT Application in SHM – Artificial Intelligence & Machine Learning in SHM **Structural Assessment & Retrofitting of Structures**: Structural Assessment & Need for retrofitting – Health assessment of structures – structural damages & failures – Principles of structural assessment – Classification & levels of assessment – Current scenario of infrastructure through case studies

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Adopt a proper health monitoring technique and suggest solution for the problems identified in the structures.	Apply
CO 2: Analyze the various health monitoring system and apply to the real time problems.	Analyse
CO 3: Propose a research project focused on developing innovative ways to monitor the health of aging infrastructure. Outline your research objectives, methodology, and expected outcomes.	Apply

Text Book(s):

T1. Daniel Balageas, Claus - Peter Fritzen, Alfredo Guemes, "Structural Health Monitoring", 1st

Edition, ISTE Publishing Ltd., U.K. 2006.

T2. Douglas E "Health Monitoring of Structural Materials and Components Methods with

Applications", 1st Edition, Wiley Publisher, 2007.

T3. J. P. Ou, H. Li and Z. D. Duan "Structural Health Monitoring and Intelligent Infrastructure",

Vol1, Taylor and Francis Group, London, UK, 2006.

Reference Book(s):

R1. Victor Giurglutiu, "Structural Health Monitoring with Wafer Active Sensors", Academic Press Inc, 2007.

R2. Hand book on "Repair and Rehabilitation of RCC Buildings", Director General, CPWD, Govt. of India, 2002.

Web References:

- 1. <u>https://research.csiro.au/data61/structural-health-monitoring</u>
- 2. <u>https://beanair.com/conditioning-monitoring-system.html</u>
- 3. https://www.hindawi.com/journals/ace/2010/724962/
- 4. <u>https://www.ndt.net/events/NDTCanada2014/app/content/Slides/40_Tamutus.pdf</u>
- 5. <u>https://cpwd.gov.in/Units/FinalDraftHandbook_Apr2007.pdf</u>

Course Code: 24STE	5003	Course Title: FRACTURE MECHANISM IN CONCRETE STRUCTURES		
Course Category: Pr Elective	ofessional	Course Level: Mastery		
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours: 45	Мах	Marks: 100
Course Objectives:				
The course aims to in	mpart the kn	owledge on fracture types and m	icro mec	hanism, energy
concepts in crack and	mechanism	of linear elastic and elastic plastic	fractures	3.
Module I				23 Hours
INTRODUCTION TO	FRACTURE	MECHANISM		
Ductile and brittle frac	ctures - Conv	entional design practices - Need	for fractu	re mechanics in
design - Micromechanics of various types of fracture - Mode I, II and III cracks - Crack detection				
methods.				
ENERGY RELEASE	RATE AND F	RESISTANCE OF CRACK		
Stress concentration of	concepts - Gr	iffith's theory and Irwin's modificat	ion - Ene	ergy release rate
- Change in compliance and strain energy approaches - Crack resistance curves - Plane				
stress and plane strain cases - Crack stability and instability conditions.				
Module II				22 Hours

LINEAR ELASTIC FRACTURE AND ELASTIC PLASTIC FRACTURE MECHANICS

Linear Elastic Fracture Mechanics (LEFM), Conditions for validity of LEFM - Stress field around crack tip in Mode I, II and III cracks - Stress intensity parameter - Formulations under complex loads - Relation between stress intensity parameter and energy release rate - Crack tip plastic zone - Analysis of plastic zone size by conventional yield theories - Irwin's correction - Relevant and scope of elastic plastic fracture mechanics, J-Integral, Path independence, Stress-Strain relation.

CRACK TIP OPENING DISPLACEMENT AND FATIGUE

Introduction - Relationship between CTOD, KI, GI for small scale yielding - Equivalence between CTOD and J; S-N curve - crack initiation and propagation - effect of overload - variable amplitude fatigue load.

Cognitive Level
-
Apply
, the start
Understand
-
Apply

Text Book(s):

T1...T.L. Anderson, Fracture mechanics: Fundamentals and Applications, 4th Edition. CRC Press, Taylors & Francis, 2017.

T2. Shah, S.P., Swartz, S.E., and Ouyang, C., Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete Rock and Other Quasi brittle Materials John Wiley and

of Fracture Mechanics to Concrete, Rock, and Other Quasi-brittle Materials, John Wiley and Sons, 1994.

Reference Book(s):

R1. K. Ramesh, E-Book, Engineering Fracture Mechanics (With Troubleshooting and

searching, multimedia facilities) by, IIT, Madras.

R2. ACI 446.1 R-91, Fracture Mechanics of Concrete: Concepts, Models and Determination of

Material Properties, American Concrete Institute.

Course Code: 24STE004 Course Title: Structural Optimization				
Course Category: Pr Elective	rofessional	Course Level: Mastery		
L:T:P(Hours/Week) 3:0 :0	Credits: 3	Total Contact Hours: 45	Max Ma	rks: 100
Course Objectives: The course is intended to impart knowledge on concept of optimization, linear programming and non-linear programming. Solve problem on dynamic programming in optimization and practical structures subjected to dynamic loading.				
Module I				25 Hours
Introduction to Optin	nization: Engine	ering application of Optimiz	ation – S	Statement of an
optimization problem	- Optimal Proble	m formulation – Classificatior	of optimi	zation problems.
Active constraint - G	Blobal and Loca	I minima. Standard form of	a linear	programming -
Geometry of linear programming - Simplex method - Basic solution - computation				
maximization and minimization – Dual relations – Dual simplex method – revised simplex				
method - One dimensional minimization methods – Dichotomous search – Fibonacci method –				
Golden section method – Interpolation methods. Unconstrained optimization techniques –				
Cauchy's steepest descent method – Davidon Fletcher powell method.				
Module II				20 Hours

Bellman's principle of optimality - Representation of a multistage decision problem – Concept of sub-optimization problems using classical and tabular methods – Linear programming as a case of dynamic programming - Methods of optimal design of structural elements – Minimum weight design for truss members – Fully stressed design – Optimization principles to design of R.C members.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Identify, formulate and solve engineering problems by linear and	Apply
non-linear programming by applying the knowledge of optimization	
techniques.	Amelia
CO 2: Apply the engineering knowledge to understand the concept of dynamic programming and design various structural elements.	Apply
CO 3: Prepare a case study on any of the optimization technique followed in engineering members.	Apply
Text Book(s):	
T1. Rao, S.S. "Engineering Optimization: Theory and Practice", 4th Edition, Wi	ley Easterr
(P) Ltd., 2013.	
T2. Belegundu A. D., Chandrupatla T. R., Optimization Concepts and	Applications ir
Engineering, 2 nd Edition, Cambridge University Press, Delhi, 2011.	
Reference Book(s):	
R1. Kalyanmoy Deb, Optimization for Engineering Design Algorithms a	and Examples
Prentice Hall, 2012	
R2. J.S.Arora, "Introduction to Optimum Design", McGraw –Hill Book Compa	iny, 2011.
R3. Iyengar. N.G.R and Gupta. S.K, "Structural Design Optimization", Affilia	ated East Wes
Press Ltd, New Delhi, 1997	

Course Code: 24STE005		Course Title: STRUCTURAL STABILITY		
Course Category: Professional Elective		Course Level: Mastery		
L:T:P(Hours/Week) 3:0:0	Credits: 3	Total Contact Hours: 45	Max Ma	rks: 100
Course Objectives:				
The course is intende	d to expose the	students to the buckling of dif	ferent stru	uctural elements
such as beam, column, frames, & pla		ates and also to know about	the torsi	onal and lateral
buckling.				
Module I				22 Hours

Buckling of Columns

States of equilibrium – concept of equilibrium, energy, imperfection and vibration approaches to stability analysis. Governing equation for column buckling – Analysis for various boundary conditions – using Equilibrium, Energy methods – Approximate methods – Rayleigh Ritz, Galerkins approach – Numerical Techniques – Finite difference method – Effect of shear on buckling.

Buckling of Beam-Columns and Frames

Theory of beam column – Stability analysis of beam column with single and several concentrated loads, distributed load and end couples – Analysis of rigid jointed frames with and without sway – Moment distribution – Slope deflection and stiffness method.

Module II

23 Hours

Torsional and Lateral Buckling

Torsional buckling – Combined Torsional and flexural buckling - Local buckling - Buckling of Open Sections - Lateral buckling of beams – pure bending of simply supported and cantilever beams.

Buckling of Plates

Governing differential equation - Buckling of thin plates with various edge conditions - Analysis by equilibrium and energy approach – Finite difference method.

Inelastic Buckling

Double modulus theory - Tangent modulus theory - Shanley's model - Eccentrically loaded inelastic column. Inelastic buckling of plates - Post buckling behaviour of plates.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Derive the buckling load on column, beam – columns and frames by various approaches.	Apply
CO 2: Derive the equation for buckling of thin walled members, plates and inelastic buckling.	Apply
CO 3: Prepare a report on real-world structural failure by identifying the causes of instability, and propose alternative design strategies that could have prevented the failure.	Apply
Reference Book(s):	

R1. Timoshenko, S., and Gere., Theory of Elastic Stability, McGraw Hill Book Company, 1963.

R2. Chajes, A. Principles of Structures Stability Theory, Prentice Hall, 1974.

R3. Ashwini Kumar, Stability Theory of Structures, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1995.

R3. lyenger.N.G.R., Structural stability of columns and plates, Affiliated East West Press, 1986.

R5. Gambhir, Stability Analysis and Design of Structures, Springer, New York

Course Code: 24STE006		Cou	rse Title: Advanced Compo Structures	osite Materials for
Course Category: Professional Elective			Course Level: Mastery	
L:T:P(Hours/Week) 3:0 :0	Credits: 3		Total Contact Hours: 45	Max Marks: 100

Course Objectives:

The course is intended to impart knowledge on the concept of composite materials, analyse the mechanical properties of composite laminae, behavior of glass-fibre laminates and design the GRP box beams.

Module I	25 Hours
Requirements of structural materials – Influence of natural materials in structu	ral form – Nature
of structural materials - Homogeneous and composite materials - As	ssumptions and
idealization - stress-strain relation - Isotropic and orthotropic laminae - Ma	acro mechanical
analysis of composite laminae, introduction, assumptions and limitation	ons – Stiffness
characteristics of glass reinforced laminae - Stress-strain relationships in	continuous and
discontinuous fiber laminae - Strength characteristics of glass reinforced lan	ninae – Stiffness
characteristics of laminated composites - Behaviour of laminated beams and	plates – Strength
analysis and failure criteria, Effect of inter laminar structures - Glass reinforc	ed composites –
Continuously reinforced laminates - unidirectional and multi directional	Illy continuously
reinforced laminates – Stiffness and strength properties.	

Module II

20 Hours

Adhesive, mechanical, combinational, transformed sections short and long term strength and stiffness properties – Temperature and fire effects – Structural joints – Experimental behavior – Effect on beam performance – Modulus of Elasticity, compressive strength – I value – Prevention of compression buckling failure – Behavior under long term loading – Design of stressed skinned roof structure.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	Levei
CO 1: Analyze the mechanical behavior of composite laminae by	Analyze
using the concept of composite materials	
CO 2: Apply the concept of composite laminates to design structural	Apply
elements	
CO3 : Design GRP box beams by using the concept of composite	Apply
laminates and the behavior of glass-fibre laminates	
CO 4: Propose a research project on developing a composite structural	Annhy
element.	Apply
Text Book(s):	

T1. R Fangueiro, Fibrous and Composite Materials for Civil Engineering Applications, Woodhead Publishing Ltd, 2011

T2. Madhujit Mukhop, Mechanics of Composite Materials and Structures, Universities press, 2004.

Reference Book(s):

R1. Holmes. M and Just D.J., GRP in Structural Engineering, Narosa Puublications, New Delhi, 2008.

R2. Robert M Jones, Mechanics of Composite Materials, McGraw Hill Publishing Co., 2002.

R3. Bhagwan D Agarvalm, and Lawrence J Brutman, Analysis and Performance of Fiber Composites, John Willy and Sons, 2004.

Course Code: 24STE008		Course Title: THEORY OF PLAT	ES AND	SHELLS
Course Category:		Course Level:		
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours: 45	Max	Marks: 100
Course Objectives:				
The course is intend	led to expos	e the students to understand the	deform	ation of plates,
classification of shells	and numeric	cal approaches to solve plates and s	shells.	
Module I				23 Hours
Symmetrical Bendin	g of Plates			
Equation of equilibriu	m and deform	nation of plates – Bending of rectan	gular pla	ates and circular
plates – Post buckling	g behaviour.			
Numerical Methods				
Energy method – Fin	ite difference	and Finite element methods – Pla	ate beno	ding problems -
Principles of design o				01
	1			
Module II				22 Hours
Shells				
Shell surfaces - Class	sification of sl	hell surfaces – Surfaces of revolution	$n - \Delta$ -fo	orms of surfaces
 Characteristics of sh 	nell surfaces	 Surfaces and its related aspects – 	Curvatu	
- Curves and related				ures of a surface
	aspects.			ures of a surface
Structural Behaviou	•			ures of a surface
	r of Shell	elations – Equilibrium equations – St	tress-str	
Structural behaviour a	r of Shell and various re	elations – Equilibrium equations – St hell elements in membrane state -		ain relationships
Structural behaviour a – Equilibrium equatio	r of Shell and various re ons for thin s		- Curvili	ain relationships near coordinate
Structural behaviour a – Equilibrium equations system – Shells of revenues of the second se	r of Shell and various re ons for thin s	hell elements in membrane state -	- Curvili	ain relationships near coordinate ells.
Structural behaviour a – Equilibrium equation system – Shells of rev Course Outcomes At the end of this course	r of Shell and various re ons for thin s volution – Str rse, students	hell elements in membrane state - ain-displacement relations for cylinc will be able to:	- Curvili Irical she	ain relationships near coordinate
Structural behaviour a – Equilibrium equations system – Shells of reverse Course Outcomes At the end of this course CO 1: Derive the different	r of Shell and various re ons for thin s volution – Stra rse, students erential equat	hell elements in membrane state - ain-displacement relations for cylind	- Curvili Irical she	ain relationships near coordinate ells. Cognitive
Structural behaviour a – Equilibrium equation system – Shells of rev Course Outcomes At the end of this course	r of Shell and various re ons for thin s volution – Stra rse, students erential equat n plates.	hell elements in membrane state - ain-displacement relations for cylind will be able to: ion for bending of thin plate, rectang	- Curvili Irical she	ain relationships near coordinate ells. Cognitive Level

Text Book(s):

T1. Chandrashekahara, K. Theory of plates, University Press (India) Ltd., Hyderabad, 2001.

T2. Reddy J N, "Theory and Analysis of Elastic Plates and Shells", McGraw Hill Book Company, 2006.

T3. Timoshenko. S. P, and Krieger S. W. Theory of Plates and Shells, McGraw Hill Book Company, New York, 2003.

Reference Book(s):

R1. Ventsel E and Krauthammer T, "Thin Plates and Shells", Marcel Dekker, Inc., 2001.

R2. Ugural A, "Stresses in Plates and Shells", McGraw Hill, 1999.

R3. Gould P. L, "Analysis of Shells and Plates", Springer-Verlag, 1988.

R4. Dym C. L, "Introduction to the Theory of Shells", Hempshire Publishing Corp., 1990.

Course Code: 24STE009	O Course Title	: DISASTER MITIGATION AN	D MAN	IAGEMENT
Course Category: Professional Elective		Course Level: Mastery		
L:T:P(Hours/Week) 3:0:0			Max	Marks: 100
Course Objectives:				
The course is intended to	impart knowledge	e of causes of various disaster a	and its	impact,
concept of Disaster Mana	gement Cycle and	Framework and Applications of	of Scier	nce and
Technology for Disaster N	lanagement & Mit	igation.		
Module I				22 Hours
Introduction				I
Concepts of Disaster and	d its types – Haza	ard – Vulnerability – Risk – Ca	apacity	 Disaster and
Development – disaster n	nanagement.			
Consequences and Con	trol of Disasters			
Geological, Hydro-Meteor	rological, Biologica	al, Technological and Man- ma	ide Dis	asters – Global
Disaster Trends – Emergi	ng Risks of Disas	ters – Climate Change and Urb	an Dis	asters.
Disaster Management C	ycle and Framew	vork		
Disaster Management C	ycle – Paradigm	Shift in Disaster Managemen	t – Pr	e-Disaster Risk
Assessment and Analysi	s – Risk Mapping	g – zonation and Micro zonat	tion –	Prevention and
Mitigation of Disasters -	- Early Warning	System: Preparedness – Cap	oacity	Development –
Awareness During Disas	ster Evacuation -	Disaster Communication - S	Search	and Rescue -
Emergency Operation Ce	ntre – Incident Co	mmand System – Relief and Re	ehabilit	ation – Damage
and Needs Assessment –	Restoration of Cri	tical Infrastructure – Early Reco	overy –	Reconstruction
and Redevelopment – IDI	NDR – Yokohama	Strategy – Hyogo Framework	of Actio	on
Module II				23 Hours
Disaster Management ir	n India			
Disaster Profile of India -	- Mega Disasters	of India and Lessons Learnt -	Disaste	er Management
Act 2005 - Institutional a	nd Financial Mech	nanism – National Policy on Di	saster	Management -
National Guidelines and	l Plans on Disas	ster Management - Role of	Gover	mment – Non-
Government and Inter-Go	overnmental Ageno	cies		

Applications of Science and Technology for Disaster Management & Mitigation

Geo-informatics in Disaster Management – Disaster Communication System – Land Use Planning

and Development Regulations - Structural and Non Structural Mitigation of Disasters - S&T

Institutions for Disaster Management in India

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:		
CO 1: Analyze the consequences, trends, and emerging risks associated with disasters to evaluate global disaster trends through the case studies of disasters, identify lessons learned, and propose innovative solutions for disaster risk reduction and management.	Apply	
CO 2: Apply geo-informatics tools to mitigate disaster risks effectively and evaluate the role of science and technology in disaster management and recovery.	Analyse	
CO3: Propose a case study analysis of a recent disaster event and assess the strengths and weaknesses of the disaster management response. Identify lessons learned and recommendations for future improvement.	Apply	

T1. S.C. Sharma," Disaster Management" Khanna Publishing, 2nd edition, 2022.

T2. Damon P Coppola, "Introduction to International Disaster Management" BH Publishers, 4th

edition, 2021.

T3. Manual on "Natural disaster management in India", M C Gupta, NIDM, New Delhi.

Reference Book(s):

R1. Disaster Management Act, Publisher by Govt. of India.

R2. National Disaster Management Policy, Gol.

Web References:

- 1. <u>https://ndma.gov.in/</u>
- 2. <u>https://www.newbedford-ma.gov/emergency-management/emergencies-disasters/mitigation/</u>
- 3. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152083/</u>
- 4. <u>https://www.asdma.gov.in/pdf/publication/undp/disaster_management_in_india.pdf</u>

Course Code: 24STE010		Course Title: RETROFITTING AND REHABILITATION OF STRUCTURES	
Course Category: Professional Elective		Course Level: Mastery	
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours: 45	Max Marks: 100

Course Objectives:

The course aims to impart the knowledge on assessing the structural defects, selecting the proper repair materials and various retrofitting techniques.

Module I

22 Hours

MAINTENANCE AND REPAIR ASSESSMENT

Need for rehabilitation of structures - Service life behaviour - importance of Maintenance - causes and effects of deterioration - Different types of cracks, causes and effects due to Environment, Fire and Earthquake - Mechanism of steel corrosion in concrete and quantification of corrosion damage - Non-destructive Testing Techniques.

REPAIR MATERIALS AND SPECIAL CONCRETES

Repair materials-Various repair materials, Criteria for material selection, Methodology of selection, Special mortars and concretes- Polymer Concrete and Grouting materials- Bonding agents-Latex emulsions, Epoxy bonding agents, Protective coatings-Protective coatings for Concrete and Steel, FRP sheets.

Module II

23 Hours

STRUCTURAL PROTECTION METHODS

Concrete protection methods – reinforcement protection methods- cathodic protection – Sacrificial anode - Corrosion protection techniques – Corrosion inhibitors, concrete coatings-Corrosion resistant steels, Coatings to reinforcement

REPAIR, RETROFITTING AND DEMOLITION OF STRUCTURES

Various methods of crack repair, Grouting, Routing and sealing, Stitching, Dry packing, Autogenous healing, Repair to active cracks, Repair to dormant cracks. Repair of various corrosion damaged of structural elements (slab, beam and columns) Jacketing Techniques, Strengthening Methods for Structural Elements - Engineered Demolition -Case studies.

Course Outcomes	Cognitive Level
At the end of this course, students will be able to:	
CO1 Assess the structural health and select suitable repair and retrofitting	Apply
technique.	дрру
CO2 Adopt specific materials required for repair and retrofitting of	Apply
structures.	Apply
CO3 Apply the techniques for repair, retrofitting and protection of existing	Apply
structures.	Apply
CO4 Prepare a detailed case study report on structural defects of existing	Apply
structures and suggest suitable repair and retrofitting measures.	Apply
Text Book(s):	
T1. Ravishankar.K., Krishnamoorthy. T.S, Structural Health Monit	toring, Repair and
Rehabilitation of Concrete Structures, Allied Publishers, 2004.	
T2. Varghese, P.C., "Maintenance Repair and Rehabilitation and Minor W	orks of Building", 1st
Edition, Prentice Hall India, 2014.	
Reference Book(s):	
R1. Hand Book on "Repair and Rehabilitation of RCC Buildings-Dire	ctor General Works
CPWD", Govt of India, New Delhi,2002.	
R2. Hand Book on "Seismic Retrofit of Buildings", CPWD and Indian	Buildings Congress,
Narosa Publishers, 2008.	
Web References:	
1. https://onlinecourses.nptel.ac.in/noc22_ce20/preview	
2. <u>cpwd.gov.in/Units/handbook.pdf</u>	

Course Code: 24STE0	10	Course Title: GREEN BUILDING T	ECHNOLOGY	
Course Category: Professional Elective		Course Level: Mastery		
L:T:P(Hours/Week) 3:0:0	Credits: 3	Total Contact Hours: 45	Max Marks: 100	
Course Objectives:				
The course is intended	to impart know	wledge about green building technolog	gies and their	
application in sustainable	e construction	n and development.		
Module I			25 Hours	
Introduction to Green	Buildings: D	efinition of green buildings and sustain	nable development	
- typical features of g	reen building	gs – benefits of green buildings to	wards sustainable	
development. Green bui	Iding rating sy	ystems: GRIHA – IGBC – LEED – ove	rview of the criteria	
as per		these rating	systems.	
Site selection and pla	nning: Criter	ria for site selection - preservation c	f landscape – soil	
erosion control – minimi	zing urban he	at island effect – maximize comfort by	proper orientation	
of building	facades,	day lighting, ven	tilation, etc.	
Water conservation a	nd efficiency	r: Rainwater harvesting methods for	roof & non-roof -	
reducing landscape wa	ter demand b	by proper irrigation systems - water	efficient plumbing	
systems - water met	ering – was	ste water treatment – recycle and	d reuse systems.	
Energy Efficiency: En	vironmental ir	mpact of building constructions, Con	cepts of embodied	
energy, operational ene	rgy and life cy	/cle energy		
Methods to reduce o	perational e	nergy: Energy efficient building env	velopes – efficient	
lighting technologies – e	energy efficier	nt appliances for heating and air-cond	litioning systems in	
buildings – zero ozone depleting potential (ODP) materials – wind and solar energy harvesting				
<u>.</u>	monitoring – c	concept of net zero buildings		
Module II			20 Hours	
-		uce embodied energy in building mate		
Ū		and renewable materials like bamboo		
earth, stabilized mud blo	ocks – use of n	naterials with recycled content such as	s blended cements,	
pozzolana cements, fly ash bricks, vitrified tiles, materials from agro and industrial waste -				
Reuse of waste and sal	vaged materia	als		

Waste Management: Handling of construction waste materials – separation of household

waste - on-site and off-site organic waste management

Indoor Environmental Quality for Occupant Comfort and Wellbeing: Daylighting – air

ventilation - exhaust systems - low VOC paints - materials & adhesives - building acoustics

- Codes related to green buildings: NBC - ECBC - ASHRAE - UPC etc.

Course Outcomes	Cognitive
At the end of this course, students will be able to:	Level
CO 1: Analyse site selection criteria for green buildings, considering landscape preservation and Assess strategies for enhancing energy efficiency in green buildings.	Analyse
CO 2: Analyze the environmental impact of building materials and apply methods to reduce embodied energy, promoting the reuse of waste materials and importance of indoor environmental quality for occupant comfort and well-being.	Apply
CO 3: Compare and evaluate the criteria used by green building rating systems to assess the sustainability and environmental performance of buildings.	Analyse
CO 4: Investigate the role of green building technology in mitigating climate change. Discuss how green buildings contribute to reducing carbon emissions and improving resilience to climate-related challenges.	Analyse
Text Book(s):	
T1. Indian Green Building Council, "Introduction to Green Building and Built E	nvironment" BS
Publications, 2023.	
T2. GRIHA version 2015, GRIHA rating system, Green Rating for International States of the system of	grated Habita
Assessment.	
T3. Charles J. Kibert, "Sustainable Construction - Green Building Design and	Delivery", Johi
Wiley & Sons, New York, 2008.	
Reference Book(s):	
R1. Sustainable Building Design Manual, Vol.1 and 2, TERI, New Delhi, 2004.	
R2. K.S. Jagadish, B.V. Venkatarama Reddy and K.S. Nanjunda Rao "Alte	rnative building
materials and technologies " New age international publishers, 2007.	
R3. IGBC Green Homes Rating System, Version 2.0., Abridged reference	guide, Indian
Green Building Council Publishers, 2013.	
Web References:	
1. https://archive.nptel.ac.in/courses/105/102/105102195/	

3. <u>https://www.igi-global.com/chapter/green-building-technologies/284812</u>

Course Code: 24STE011		Course Title: RETROFITTING AND REHABILITATION OF STRUCTURES	
Course Category: Professional Elective		Course Level: Mastery	
L:T:P(Hours/Week) 3: 0: 0	Credits:3	Total Contact Hours: 45	Max Marks: 100

Course Objectives:

The course aims to impart the knowledge on assessing the structural defects, selecting the proper repair materials and various retrofitting techniques.

Module I

22 Hours

MAINTENANCE AND REPAIR ASSESSMENT

Need for rehabilitation of structures - Service life behaviour - importance of Maintenance - causes and effects of deterioration - Different types of cracks, causes and effects due to Environment, Fire and Earthquake - Mechanism of steel corrosion in concrete and quantification of corrosion damage - Non-destructive Testing Techniques.

REPAIR MATERIALS AND SPECIAL CONCRETES

Repair materials-Various repair materials, Criteria for material selection, Methodology of selection, Special mortars and concretes- Polymer Concrete and Grouting materials- Bonding agents-Latex emulsions, Epoxy bonding agents, Protective coatings-Protective coatings for Concrete and Steel, FRP sheets.

Module II

23 Hours

STRUCTURAL PROTECTION METHODS

Concrete protection methods – reinforcement protection methods- cathodic protection – Sacrificial anode - Corrosion protection techniques – Corrosion inhibitors, concrete coatings-Corrosion resistant steels, Coatings to reinforcement

REPAIR, RETROFITTING AND DEMOLITION OF STRUCTURES

Various methods of crack repair, Grouting, Routing and sealing, Stitching, Dry packing, Autogenous healing, Repair to active cracks, Repair to dormant cracks. Repair of various corrosion damaged of structural elements (slab, beam and columns) Jacketing Techniques, Strengthening Methods for Structural Elements - Engineered Demolition -Case studies.

Course Outcomes	Cognitive Level		
At the end of this course, students will be able to:			
CO1 Assess the structural health and select suitable repair and retrofitting	Apply		
technique.	Арріу		
CO2 Adopt specific materials required for repair and retrofitting of	Apply		
structures.	Apply		
CO3 Apply the techniques for repair, retrofitting and protection of existing	Annha		
structures.	Apply		
CO4 Prepare a detailed case study report on structural defects of existing	Annha		
structures and suggest suitable repair and retrofitting measures.	Apply		
Text Book(s):			
T1. Ravishankar.K., Krishnamoorthy. T.S, Structural Health Monit	toring, Repair and		
Rehabilitation of Concrete Structures, Allied Publishers, 2004.			
T2. Varghese, P.C., "Maintenance Repair and Rehabilitation and Minor W	orks of Building", 1st		
Edition, Prentice Hall India, 2014.			
Reference Book(s):			
R1. Hand Book on "Repair and Rehabilitation of RCC Buildings-Dire	ctor General Works		
CPWD", Govt of India, New Delhi,2002.			
R2. Hand Book on "Seismic Retrofit of Buildings", CPWD and Indian	Buildings Congress,		
Narosa Publishers, 2008.			
Web References:			
3. https://onlinecourses.nptel.ac.in/noc22_ce20/preview			
4. cpwd.gov.in/Units/handbook.pdf			

Course Code: 24ST	E012	Course Title: Design of Industrial Str	ructures	
Course Category: Professional Elective		Course Level: Mastery		
L:T:P(Hours/Week)	Credits:3	Total Contact Hours: 45 M	Max Marks: 100	
3: 0: 0	Creats:5	Total Contact Hours: 45		
	•	the students to the planning and function design if various industrial structures.	nal requirements o	
Module I			23 Hours	
regarding Lighting, V Guidelines of Factorie Industrial Buildings	entilation an es Act.	ndustrial structures – planning for Lay d Fire Safety – Protection against noi Crane Girders – Design of Corbels and	se and vibration -	
Module II			22 Hours	
Rack and supporting Transmission Line S Analysis and design	structures Structures ar of steel m	ent structures – Cooling Towers – Bunke nd Chimneys onopoles, transmission line towers – ting – Design of self-supporting and guye	Sag and Tensior	
Course Outcomes			Cognitive	
At the end of this cour	rse, students	will be able to:	Level	
CO1: Develop the c structures.	oncept of pl	anning, analyse and design of indust		
CO2: Analyse & desig and chimneys.	gn of power p	lant structures, transmission line structu	res Apply	
new purpose conside		ning any existing industrial building for odes and standards.	a Apply	
A Design Manual, Birl		ausmann, Frank Juttner, Klauss Daniel, I ishers, 2004.	Industrial Buildings	
T2 Santhakumar A R	and Murthy	S.S., Transmission Line Structures, Tata	McGraw Hill 1992	

Course Code: 24STE013		Course Title: Design of E	Bridges	
Course Category: Professional Elective		Course Level: Mastery		
L:T:P(Hours/Week) 3:0 : 0	Credits:3	Total Contact Hours:45	Max Marks:100	
Course Objectives: To study the loads, forces on bridges and design principles of several types of bridges.				
Module I			22 Hours	
Introduction : Sele	ection of Site and	I Initial Decision Process - C	Classification of Bridges-	
General Features of	Design- Standa	rd Loading for Bridge Design	as per different codes -	
Road Bridges – Rail	way Bridges			
Design of Short Spa	an Bridges: Desig	gn Codes - Working Stress Me	ethod- Limit State Method	
of Design–Selection	n of main bridg	je parameters, design met	hodologies -Choices of	
superstructure types	- Orthotropic pla	te theory, load distribution tec	hniques.	
Module II	on Pridaos, And	lysis and Design of RCC solic	23 Hours	
	-	sign principles of continuous	Ū	
	0			
-	_	 Arch bridges – Box culver 	is – Segmental blidges–	
Design principles on	ly Design of blidg	e bearings and substructure		
Design of Special	Bridges: Desig	n principles of PSC bridges	s – PSC girders –Design	
principles of steel bri	dges - Plate girde	er bridges – Box girder bridges	s – Truss bridges – Vertical	
and Horizontal stiffer	ners.			
Course Outcomes			Cognitive Level	
At the end of this cou	rse, students will	be able to:	-	
CO 1: Design an RC Slab bridge	solid slab culvert	bridge and Tee Beam and	Apply	
CO 2: Design the bric	lge bearings and	substructure	Apply	
CO 3: Evaluate the de bridges, truss bridges	• • •	f PSC bridges, box girder	Evaluate	

bridges, truss bridges

Text Book(s):

T1. N. Krishna Raju, Design of Bridges, Oxford & IBH publisher, 2019.

Reference Book(s):

R1. T.R. Jagadeesh, M. A. Jayaram, Design of Bridge Structures, PHI Learning, 2009.

R2. N. Krishna Raju, Design of Prestressed Concrete Bridges, CBS publisher, 2010.

ourse Code: 24STE014	Course Title: Design of Sub-Structures		
Course Category: Professional Electives	Course Level: Mastery		
:T:P(Hours/Week) :0:0 Credits: 3	Total Contact Hours:	Max Marks: 100	
ourse Objectives:	·		
he course is intended to impart	knowledge on design of sh	nallow foundations, deep	
oundations, well foundations, maching	ne foundations and special four	ndations.	
Iodule I		22 Hours	
hallow Foundations			
Subsoil exploration methods - In-situ testing of soils - Classification of foundations - General			
requirement of foundations - Selection of foundations Bearing capacity of soil. Structural design			
f isolated footings, strip footings, co	mbined footings.		
Deep Foundations			
Types of pile foundations - load carrying capacity - pile load test - structural design of straight			
piles -configuration of piles- Pile groups: Bearing capacity, settlement, uplift capacity, load			
distribution between piles different shapes of piles cap – structural design of pile cap. Type of			
Iodule II		23 Hours	

Well Foundations

Types of well foundation – Grip length – load carrying capacity – construction of wells – Failures and Remedies – Design of well foundation – Lateral stability.

Machine Foundations

Introduction to machine foundation - Types of machine foundation - Basic principles of design

of machine foundation - Dynamic properties of soil - vibration analysis of machine foundation

- Design of foundation for Reciprocating machines and Impact machines - Reinforcement and

construction details - vibration isolation.

Special Foundations

Foundation on expansive soils – choice of foundation – under-reamed pile foundation. Foundation for concrete Towers, chimneys – Design of anchors- Reinforced earth retailing walls.

Course Outcomes	Cognitive Level	
At the end of this course, students will be able to:		
CO 1: Understand the principles of subsoil exploration and the design concepts of foundations.	Understand	
CO 2: Determine the bearing capacity of soil and load carrying capacity of piles.	Apply	
CO 3: Design of reinforced concrete shallow foundations, pile foundations, well foundations, and machine foundations.	Apply	
CO 4: Prepare a report of design of special foundation for different structures on different soil conditions.	Apply	
Text Book(s):		

T1. Bowles .J.E., "Foundation Analysis and Design", McGraw Hill Publishing co., New York, 1997.

T2. Braja. M. Das Principles of Foundation Engineering", PWS Publishing Company.

Reference Book(s):

R1. Tomlinson. M.J, "Foundation Design and Construction", Longman, Sixth Edition, New Delhi, 1995.

R2. Swamy Saran," Analysis and Design of substructures", Oxford and IBH Publishing Co. Pvt. Ltd., 2006.

R3. Varghese.P.C, "Design of Reinforced Concrete Foundations" – PHI learning private limited, New Delhi - 2009.

Web References:

1. https://onlinecourses.nptel.ac.in/noc22_ce32

2.https://freevideolectures.com/course/3269/advanced-foundation-engineering

3. https://archive.nptel.ac.in/courses/105/104/105104162

Course Code: 24STE	E015	Coι	ırse Title: Earthquake Resis	tant Struc	ctures	
Course Category: Professional Elective		Course Level: Mastery				
L:T:P(Hours/Week) 3:0 :0			Total Contact Hours: 45	Max Marks: 100		
Course Objectives:			·			
	ed design,	code	vledge on concepts of engine e provisions for seismic and ing of structures.	0	0, 0	
Module I					23 Hours	
Elements of seismold	ogy - causes	s of e	earthquakes, seismic waves,	magnitude	e, intensity and	
energy release – India	an seismolog	y - G	round Motion parameters - Be	ehaviour of	Building during	
past earthquakes - Pr	rinciples of e	eartho	quake resistant design - Resp	oonse Spe	ctrum Theory –	
Design spectrum – D	esign princip	ples,	Capacity based design, Stro	ong columr	n – weak beam	
concept - Code Provis	sions of Desi	ign o	f Buildings as per IS1893 and	d IS4326 –	Behaviour and	
Design of Masonry St	tructures as	Per	IS 13827 and IS13828 - Met	hods of Se	eismic Analysis:	
Equivalent static anal	ysis – Resp	onse	Spectrum method – Time hi	story meth	od – Pushover	
Analysis.						
Module II					22 Hours	
Ductile detailing of rein	nforcement i	n RC	Buildings as per IS 13920 - C	oncept of o	ductility – lateral	
force resisting system	is - Earthqua	ake R	esistant Design for multi stor	ey RC fran	nes, shear wall,	
braced frames - Base isolation technique, Active and passive control devices - Seismic retro-				- Seismic retro-		
fitting strategies for R	C and masor	nry b	uildings - Soil Liquefaction.			
Course Outcomes					Cognitive	
At the end of this cour	rse, students	s will	be able to:		Level	
,	•		arthquake resistant design & f the structures to dynamic lo	ads and	Apply	
CO 2: Apply the conc provision.	cept of ductili	ity to	design RC elements as per c	ode	Apply	
CO 3: Utilize the mod structures under earth			strengthening and retrofitting	of	Apply	

CO 4: Prepare and present an earthquake resistant design for multi storey RC frames based on the given zone conditions.	Apply
Text Book(s):	·
T1. Chopra A.K., Dynamics of Structures - Theory and Applications of Earthqual	ke Engineering,
N J Pearson Education inc., 2017	
T2. Pankaj Agarwal and Manish Shrikhande., (2010), Earthquake resistant desig	yn of structures,
Prentice-Hall India Pvt. Ltd., New Delhi.	
Reference Book(s):	
R1. Duggal S.K., Earthquake Resistant Design of Structures, Prentice Hall of In	dia, New Delhi,
2013.	
R2. IS: 1893:2016 (Part 1), Criteria for earthquake resistant design of structure	S.
R3. IS: 13920: 2016, Ductile detailing of reinforced concrete structures subject	cted to seismic
forces	
Web References:	

- 1. https://swayam.gov.in/nd1_noc20_ce52/
- 2. https://onlinecourses.nptel.ac.in/noc24_ce96/